Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
100883572421205699 ~1988
10088473605308398 ~1987
10088483201769678 ~1986
100887071008870719 ~1987
10089221807137698 ~1987
10089251201785038 ~1986
10089263201785278 ~1986
10089581605374878 ~1987
10089671201793438 ~1986
10089707807176578 ~1987
10089791201795838 ~1986
10090043201800878 ~1986
10090229807218338 ~1987
10090403201808078 ~1986
10090481605428878 ~1987
10090523201810478 ~1986
100906991009069919 ~1987
10090739201814798 ~1986
10090981605458878 ~1987
10091363201827278 ~1986
10091663201833278 ~1986
10091723201834478 ~1986
10091759201835198 ~1986
10091813605508798 ~1987
10092119201842398 ~1986
Exponent Prime Factor Digits Year
100926712624094479 ~1988
10092793605567598 ~1987
10092983201859678 ~1986
10093439201868798 ~1986
10093511201870238 ~1986
100936131413105839 ~1988
100936393431837279 ~1989
10093799201875998 ~1986
10094261605655678 ~1987
10094351201887038 ~1986
10094411201888238 ~1986
10094471201889438 ~1986
10094783201895678 ~1986
10094881605692878 ~1987
10094921605695278 ~1987
100949711009497119 ~1987
10094977605698638 ~1987
100950131615202099 ~1988
10095131807610498 ~1987
10095377605722638 ~1987
10095697605741838 ~1987
10095797605747838 ~1987
10096043201920878 ~1986
10096259201925198 ~1986
10096477605788638 ~1987
Exponent Prime Factor Digits Year
100967691413547679 ~1988
100970272423286499 ~1988
10097117605827038 ~1987
10097291201945838 ~1986
10097497605849838 ~1987
10097519201950398 ~1986
10097891201957838 ~1986
100982471009824719 ~1987
100984631615754099 ~1988
10098551201971038 ~1986
10098719201974398 ~1986
10098877605932638 ~1987
10098947807915778 ~1987
10099223201984478 ~1986
10099451201989038 ~1986
10099499201989998 ~1986
10100351202007038 ~1986
10100423202008478 ~1986
10100557606033438 ~1987
10100641606038478 ~1987
101012271818220879 ~1988
101014634040585219 ~1989
101017371414243199 ~1988
10102297606137838 ~1987
101024293030728719 ~1989
Exponent Prime Factor Digits Year
10102667808213378 ~1987
10102733606163998 ~1987
10103053606183198 ~1987
10103221606193278 ~1987
101032213030966319
10103531202070638 ~1986
10103591808287298 ~1987
10103603202072078 ~1986
10103651202073038 ~1986
10103747808299778 ~1987
10103833606229998 ~1987
10103957808316578 ~1987
10104041606242478 ~1987
10104217606253038 ~1987
10104359202087198 ~1986
10104431202088638 ~1986
101045513275895434311 ~1994
10104553606273198 ~1987
10104881808390498 ~1987
10105019202100398 ~1986
101050373031511119 ~1989
10105213606312798 ~1987
10105391202107838 ~1986
101055671010556719 ~1987
10105631202112638 ~1986
Home
4.724.182 digits
e-mail
25-04-13