Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
311756931870541599 ~1991
311756992494055939 ~1991
31175759623515198 ~1989
31176371623527438 ~1989
31176683623533678 ~1989
31176923623538478 ~1989
31177703623554078 ~1989
31177823623556478 ~1989
31178039623560798 ~1989
31178711623574238 ~1989
311787614988601779 ~1992
31179023623580478 ~1989
31179119623582398 ~1989
31179359623587198 ~1989
31179539623590798 ~1989
31179719623594398 ~1989
31180343623606878 ~1989
31180511623610238 ~1989
31180739623614798 ~1989
31181159623623198 ~1989
311812012494496099 ~1991
31181231623624638 ~1989
311812371870874239 ~1991
311821131870926799 ~1991
31182191623643838 ~1989
Exponent Prime Factor Digits Year
31182251623645038 ~1989
311827971870967839 ~1991
31182839623656798 ~1989
31183079623661598 ~1989
311830799978585299
31183081143442172710 ~1993
311831896860301599 ~1992
31183403623668078 ~1989
31184039623680798 ~1989
31184459623689198 ~1989
311844675613204079 ~1992
31184663623693278 ~1989
31184771623695438 ~1989
31184819623696398 ~1989
31185503623710078 ~1989
311857331871143999 ~1991
31186703623734078 ~1989
31187059180884942310 ~1993
31187099623741998 ~1989
31187131124748524110 ~1993
31187543623750878 ~1989
31187951623759038 ~1989
311882473118824719 ~1991
31188431623768638 ~1989
311895592495164739 ~1991
Exponent Prime Factor Digits Year
31190063623801278 ~1989
31190111623802238 ~1989
31190303623806078 ~1989
31190363623807278 ~1989
31190531623810638 ~1989
31190591623811838 ~1989
311906694366693679 ~1992
31191431623828638 ~1989
31191683623833678 ~1989
311917811871506879 ~1991
31191971623839438 ~1989
31194503623890078 ~1989
31194743623894878 ~1989
31194791623895838 ~1989
311949136862880879 ~1992
311950131871700799 ~1991
311963572495708579 ~1991
31196699623933998 ~1989
31197203623944078 ~1989
31197239230859568710 ~1993
31197539623950798 ~1989
31197589149748427310 ~1993
31197851623957038 ~1989
31198151623963038 ~1989
31198259623965198 ~1989
Exponent Prime Factor Digits Year
31198319623966398 ~1989
311983192495865539
311987531871925199 ~1991
311996039983872979 ~1992
31199999623999998 ~1989
31200551624011038 ~1989
31201679624033598 ~1989
31202159624043198 ~1989
312025331872151999 ~1991
31202543624050878 ~1989
312029331872175999 ~1991
31203779624075598 ~1989
31203983624079678 ~1989
31204643624092878 ~1989
31204703624094078 ~1989
31205231624104638 ~1989
31205351624107038 ~1989
31205519624110398 ~1989
31205651624113038 ~1989
31206011624120238 ~1989
31206083624121678 ~1989
31206317299580643310 ~1994
31207079624141598 ~1990
31207199624143998 ~1990
31207499624149998 ~1990
Home
4.724.182 digits
e-mail
25-04-13