Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
503201213019207279 ~1992
503213631006427279 ~1991
503216511006433039 ~1991
503228933019373599 ~1992
503231773019390639 ~1992
503258574026068579 ~1993
503263191006526399 ~1991
503286675032866719 ~1993
503293191006586399 ~1991
503298474026387779 ~1993
503299431006598879 ~1991
503339533020037199 ~1992
503347974026783779 ~1993
503383038054128499 ~1993
503385831006771679 ~1991
503402991006805999 ~1991
503403591006807199 ~1991
503412831006825679 ~1991
503420631006841279 ~1991
503423533020541199 ~1992
50343037120823288910 ~1994
503443311006886639 ~1991
503447991006895999 ~1991
503450631006901279 ~1991
503460831006921679 ~1991
Exponent Prime Factor Digits Year
503462274027698179 ~1993
503496831006993679 ~1991
503521191007042399 ~1991
503570031007140079 ~1991
503571231007142479 ~1991
503572333021433999 ~1992
50357561151072683110 ~1994
503580231007160479 ~1991
503587791007175599 ~1991
50360701362597047310 ~1995
503608813021652879 ~1992
503613591007227199 ~1991
50361733201446932110 ~1994
503637591007275199 ~1991
503643231007286479 ~1991
503645511007291039 ~1991
503645778058332339 ~1993
503647573021885439 ~1992
503654571490817527311 ~1996
503655013021930079 ~1992
503656311007312639 ~1991
503658773021952639 ~1992
503659613021957679 ~1992
503661711007323439 ~1991
503667591007335199 ~1991
Exponent Prime Factor Digits Year
503668573022011439 ~1992
503674191007348399 ~1991
503683373022100239 ~1992
503683431007366879 ~1991
503688231007376479 ~1991
50368889120885333710 ~1994
503701911007403839 ~1991
503714391007428799 ~1991
503721111007442239 ~1991
503722911007445839 ~1991
503761973022571839 ~1992
503763231007526479 ~1991
503784111007568239 ~1991
50378651644846732910 ~1996
50380007241824033710 ~1995
503808711007617439 ~1991
503822475038224719 ~1993
503825391007650799 ~1991
503827938061246899 ~1993
503844733023068399 ~1992
503858991007717999 ~1991
503882933023297599 ~1992
503898773023392639 ~1992
503904231007808479 ~1991
503908911007817839 ~1991
Exponent Prime Factor Digits Year
503914431007828879 ~1991
503921279070582879 ~1993
503933031007866079 ~1991
503935431007870879 ~1991
50394053161260969710 ~1994
503965791007931599 ~1991
503966031007932079 ~1991
503972511007945039 ~1991
503986613023919679 ~1992
503999631007999279 ~1991
504004373024026239 ~1992
504004911008009839 ~1991
504012231008024479 ~1991
504014994032119939 ~1993
504062031008124079 ~1991
504068031008136079 ~1991
504072111008144239 ~1991
50409949201639796110 ~1994
504103875041038719 ~1993
504108133024648799 ~1992
504121431008242879 ~1991
504130911008261839 ~1991
50416001241996804910 ~1995
504166431008332879 ~1991
504170391008340799 ~1991
Home
4.724.182 digits
e-mail
25-04-13