Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
505234674041877379 ~1993
505235631010471279 ~1991
505239474041915779 ~1993
505247115052471119 ~1993
505250874042006979 ~1993
505268511010537039 ~1991
505268871455174345711 ~1996
505269231010538479 ~1991
505298511010597039 ~1991
505303014042424099 ~1993
50530537121273288910 ~1994
505305591010611199 ~1991
505335231010670479 ~1991
505340514042724099 ~1993
505345791010691599 ~1991
50534881111176738310 ~1994
505358874042870979 ~1993
505373097075223279 ~1993
505373511010747039 ~1991
505376391010752799 ~1991
505397991010795999 ~1991
505406213032437279 ~1992
505425114043400899 ~1993
505436511010873039 ~1991
505443591010887199 ~1991
Exponent Prime Factor Digits Year
505446711010893439 ~1991
505448631010897279 ~1991
505459911010919839 ~1991
50546201151638603110 ~1994
50546299242622235310 ~1995
505486911010973839 ~1991
505493991010987999 ~1991
505503591011007199 ~1991
505512533033075199 ~1992
505518831011037679 ~1991
505526999099485839 ~1993
505540191011080399 ~1991
505544991011089999 ~1991
505545711011091439 ~1991
505549191011098399 ~1991
505550031011100079 ~1991
505570973033425839 ~1992
505581591011163199 ~1991
505589391011178799 ~1991
505614318089828979 ~1993
505650195056501919 ~1993
50566223252831115110 ~1995
505665831011331679 ~1991
505677294045418339 ~1993
50568277121363864910 ~1994
Exponent Prime Factor Digits Year
505682991011365999 ~1991
505702638091242099 ~1993
505707591011415199 ~1991
505725231011450479 ~1991
505725413034352479 ~1992
505726311011452639 ~1991
505731231011462479 ~1991
505736933034421599 ~1992
50575037151725111110 ~1994
505755711011511439 ~1991
505761111011522239 ~1991
505776711011553439 ~1991
505786813034720879 ~1992
505794231011588479 ~1991
505805213034831279 ~1992
505808631011617279 ~1991
505817631011635279 ~1991
505826214046609699 ~1993
505834875058348719 ~1993
505836231011672479 ~1991
505854711011709439 ~1991
505856631011713279 ~1991
505860831011721679 ~1991
505872591011745199 ~1991
505883333035299999 ~1992
Exponent Prime Factor Digits Year
505889031011778079 ~1991
505907631011815279 ~1991
505915311011830639 ~1991
505938413035630479 ~1992
505949031011898079 ~1991
505957191011914399 ~1991
505964991011929999 ~1991
506006031012012079 ~1991
506033631012067279 ~1991
506054031012108079 ~1991
506116515061165119 ~1993
50611723121468135310 ~1994
506123478097975539 ~1993
506125311012250639 ~1991
506143733036862399 ~1992
506174391012348799 ~1991
506195391012390799 ~1991
506196711012393439 ~1991
506214231012428479 ~1991
506215911012431839 ~1991
506217618099481779 ~1993
506234391012468799 ~1991
50626001162003203310 ~1994
506262111012524239 ~1991
506266791012533599 ~1991
Home
4.724.182 digits
e-mail
25-04-13