Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
533167791066335599 ~1991
53317487138625466310 ~1994
533179191066358399 ~1991
533184591066369199 ~1991
533189391066378799 ~1991
53319121117302066310 ~1994
53319223127966135310 ~1994
53319439127966653710 ~1994
533199915331999119 ~1993
533203911066407839 ~1991
533204814265638499 ~1993
533206911066413839 ~1991
533209074265672579 ~1993
533220231066440479 ~1991
533230573199383439 ~1992
533271711066543439 ~1991
533302791066605599 ~1991
533309991066619999 ~1991
533330991066661999 ~1991
533331831066663679 ~1991
533347911066695839 ~1991
533348214266785699 ~1993
533362191066724399 ~1991
533368311066736639 ~1991
533374191066748399 ~1991
Exponent Prime Factor Digits Year
533377374267018979 ~1993
533377377467283199
533385591066771199 ~1991
533387773200326639 ~1992
533390631066781279 ~1991
533394919601108399 ~1994
533398431066796879 ~1991
533403591066807199 ~1991
533404373200426239 ~1992
533408994267271939 ~1993
533415831066831679 ~1991
533439915334399119 ~1993
533448831066897679 ~1991
533463174267705379 ~1993
533474391066948799 ~1991
533479191066958399 ~1991
533487231066974479 ~1991
533487413200924479 ~1992
533494791066989599 ~1991
533500191067000399 ~1991
533503311067006639 ~1991
533504391067008799 ~1991
533508533201051199 ~1992
533511414268091299 ~1993
533513391067026799 ~1991
Exponent Prime Factor Digits Year
533515311067030639 ~1991
533528333201169999 ~1992
533533813201202879 ~1992
533534813201208879 ~1992
533537631067075279 ~1991
533551431067102879 ~1991
533560911067121839 ~1991
533566311067132639 ~1991
533574711067149439 ~1991
533574973201449839 ~1992
533583231067166479 ~1991
533590137470261839 ~1993
533592831067185679 ~1991
533597031067194079 ~1991
533603173201619039 ~1992
533612631067225279 ~1991
53362333128069599310 ~1994
533633391067266799 ~1991
533635373201812239 ~1992
533637013201822079 ~1992
533641911067283839 ~1991
533654274269234179 ~1993
533673111067346239 ~1991
533686973202121839 ~1992
533688231067376479 ~1991
Exponent Prime Factor Digits Year
533689791067379599 ~1991
533696631067393279 ~1991
533697533202185199 ~1992
533699991067399999 ~1991
533700474269603779 ~1993
53372867256189761710 ~1995
533731431067462879 ~1991
533732631067465279 ~1991
533750391067500799 ~1991
533753631067507279 ~1991
533777573202665439 ~1992
533777814270222499 ~1993
533782191067564399 ~1991
533794791067589599 ~1991
533804511067609039 ~1991
533812973202877839 ~1992
533829111067658239 ~1991
533831991067663999 ~1991
533835675338356719 ~1993
533842311067684639 ~1991
533858031067716079 ~1991
533863311067726639 ~1991
533877591067755199 ~1991
533892013203352079 ~1992
533916013203496079 ~1992
Home
4.724.182 digits
e-mail
25-04-13