Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
507767235077672319 ~1993
507768711015537439 ~1991
507786711015573439 ~1991
50779543121870903310 ~1994
507799977109199599 ~1993
507808431015616879 ~1991
507817191015634399 ~1991
507834231015668479 ~1991
507841431015682879 ~1991
507845991015691999 ~1991
507846591015693199 ~1991
507868914062951299 ~1993
507873297110226079 ~1993
507887391015774799 ~1991
507897231015794479 ~1991
507899511015799039 ~1991
507900231015800479 ~1991
507902631015805279 ~1991
507915231015830479 ~1991
507916515079165119 ~1993
507924591015849199 ~1991
507931731137767075311 ~1996
507952333047713999 ~1992
507953214063625699 ~1993
507978373047870239 ~1992
Exponent Prime Factor Digits Year
507995838127933299 ~1993
508002413048014479 ~1992
508011711016023439 ~1991
508012794064102339 ~1993
508029079144523279 ~1994
508029591016059199 ~1991
508040595080405919 ~1993
508048431016096879 ~1991
508057191016114399 ~1991
508065711016131439 ~1991
508069494064555939 ~1993
50809237203236948110 ~1994
508092594064740739 ~1993
508093213048559279 ~1992
508096311016192639 ~1991
50811469111785231910 ~1994
508136991016273999 ~1991
508140174065121379 ~1993
508161591016323199 ~1991
508173591016347199 ~1991
508179111016358239 ~1991
508199631016399279 ~1991
508203918131262579 ~1993
50820529518369395910 ~1995
508211391016422799 ~1991
Exponent Prime Factor Digits Year
508223773049342639 ~1992
508223991016447999 ~1991
508228791016457599 ~1991
508257831016515679 ~1991
508258974066071779 ~1993
508262213049573279 ~1992
508281591016563199 ~1991
50829673121991215310 ~1994
508298413049790479 ~1992
508302714066421699 ~1993
508326733049960399 ~1992
508335111016670239 ~1991
50833619122000685710 ~1994
508355631016711279 ~1991
508359711016719439 ~1991
508361511016723039 ~1991
508369494066955939 ~1993
508375373050252239 ~1992
508385213050311279 ~1992
508385631016771279 ~1991
508401297117618079 ~1993
50841341650769164910 ~1996
508416711016833439 ~1991
508427511016855039 ~1991
508432074067456579 ~1993
Exponent Prime Factor Digits Year
508436235084362319 ~1993
508436574067492579 ~1993
508437831016875679 ~1991
508438399151891039 ~1994
508439511016879039 ~1991
508453311016906639 ~1991
508454991016909999 ~1991
508476733050860399 ~1992
508481631016963279 ~1991
508484391016968799 ~1991
508487814067902499 ~1993
508506231017012479 ~1991
508506711017013439 ~1991
508512591017025199 ~1991
508512594068100739
508539831017079679 ~1991
508541031017082079 ~1991
508561911017123839 ~1991
508583031017166079 ~1991
508589391017178799 ~1991
508598991017197999 ~1991
508600791017201599 ~1991
508600911017201839 ~1991
508602231017204479 ~1991
508603911017207839 ~1991
Home
4.843.404 digits
e-mail
25-06-08