Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
509678031019356079 ~1991
509685591019371199 ~1991
509690631019381279 ~1991
50969423132520499910 ~1994
509699694077597539 ~1993
509701872742196060711 ~1997
509741391019482799 ~1991
509755311019510639 ~1991
509759991019519999 ~1991
509770791019541599 ~1991
509775711019551439 ~1991
509775831019551679 ~1991
509779911019559839 ~1991
509790591019581199 ~1991
509792173058753039 ~1992
509795031019590079 ~1991
509807031019614079 ~1991
509820231019640479 ~1991
509824791019649599 ~1991
509830133058980799 ~1992
509835111019670239 ~1991
509837031019674079 ~1991
509845791019691599 ~1991
509860938157774899 ~1993
509869311019738639 ~1991
Exponent Prime Factor Digits Year
509872431019744879 ~1991
509907133059442799 ~1992
509910133059460799 ~1992
509911311019822639 ~1991
509922111019844239 ~1991
509923395099233919 ~1993
509960631019921279 ~1991
509974974079799779 ~1993
509982173059893039 ~1992
509985111019970239 ~1991
509989431019978879 ~1991
509998311019996639 ~1991
510004791020009599 ~1991
510026391020052799 ~1991
510032991020065999 ~1991
510046191020092399 ~1991
510047631020095279 ~1991
510054831020109679 ~1991
510057111020114239 ~1991
51005737234626390310 ~1995
510071391020142799 ~1991
510081173060487039 ~1992
510082494080659939 ~1993
510094494080755939 ~1993
510105671316072628711 ~1996
Exponent Prime Factor Digits Year
510116991020233999 ~1991
510128031020256079 ~1991
510138111020276239 ~1991
510163191020326399 ~1991
510174711020349439 ~1991
510204711020409439 ~1991
510209933061259599 ~1992
510230991020461999 ~1991
510254274082034179 ~1993
510266031020532079 ~1991
510271431020542879 ~1991
510284031020568079 ~1991
510287391020574799 ~1991
510308391020616799 ~1991
510314391020628799 ~1991
51031523122475655310 ~1994
510317031020634079 ~1991
510345174082761379 ~1993
510345231020690479 ~1991
510349674082797379 ~1993
51035233122484559310 ~1994
510358791020717599 ~1991
510362333062173999 ~1992
510388431020776879 ~1991
510391791020783599 ~1991
Exponent Prime Factor Digits Year
510394191020788399 ~1991
510397875103978719 ~1993
510425991020851999 ~1991
510428511020857039 ~1991
510432591020865199 ~1991
510437031020874079 ~1991
510460431020920879 ~1991
51047089112303595910 ~1994
510493311020986639 ~1991
510506475105064719 ~1993
510506874084054979 ~1993
510532911021065839 ~1991
510535911021071839 ~1991
510536991021073999 ~1991
510538613063231679 ~1992
510545991021091999 ~1991
510557694084461539 ~1993
510586194084689539 ~1993
510587391021174799 ~1991
510591177148276399 ~1993
510616911021233839 ~1991
510620213063721279 ~1992
510624918169998579 ~1993
51065177153195531110 ~1994
510654111021308239 ~1991
Home
4.843.404 digits
e-mail
25-06-08