Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
511780311023560639 ~1991
51178847133065002310 ~1994
511789311023578639 ~1991
511801791023603599 ~1991
511806533070839199 ~1992
511826473930827289711 ~1998
511833231023666479 ~1991
511839591023679199 ~1991
51184247286631783310 ~1995
511846311023692639 ~1991
511851173071107039 ~1992
511853391023706799 ~1991
511866133071196799 ~1992
511866231023732479 ~1991
511867494094939939 ~1993
511871511023743039 ~1991
511874697166245679 ~1993
511876791023753599 ~1991
511910391023820799 ~1991
511917111023834239 ~1991
511928031023856079 ~1991
51194041112626890310 ~1994
511947231023894479 ~1991
511953591023907199 ~1991
511955238191283699 ~1993
Exponent Prime Factor Digits Year
511958694095669539 ~1993
511968133071808799 ~1992
511973511023947039 ~1991
511975191023950399 ~1991
511979879215637679 ~1994
511982391023964799 ~1991
511991031023982079 ~1991
511995591023991199 ~1991
511999213071995279 ~1992
511999878191997939 ~1993
512031714096253699 ~1993
512037831024075679 ~1991
512038614096308899 ~1993
512051838192829299 ~1993
512059191024118399 ~1991
512067773072406639 ~1992
512070591024141199 ~1991
512072031024144079 ~1991
512074213072445279 ~1992
512106111024212239 ~1991
512110311024220639 ~1991
512110794096886339 ~1993
512113791024227599 ~1991
512116911024233839 ~1991
512117391024234799 ~1991
Exponent Prime Factor Digits Year
512121591024243199 ~1991
512142831024285679 ~1991
512144511024289039 ~1991
512148111024296239 ~1991
512164799218966239 ~1994
512170311024340639 ~1991
512174991024349999 ~1991
51218183256090915110 ~1995
512190714097525699 ~1993
512210631024421279 ~1991
512211231024422479 ~1991
512212395122123919 ~1993
51221893153665679110 ~1994
512235591024471199 ~1991
512267391024534799 ~1991
512267511024535039 ~1991
512270511024541039 ~1991
512273031024546079 ~1991
512280591024561199 ~1991
512309511024619039 ~1991
512317995123179919 ~1993
512323191024646399 ~1991
512342991024685999 ~1991
512357631024715279 ~1991
512370831024741679 ~1991
Exponent Prime Factor Digits Year
512372391024744799 ~1991
512374191024748399 ~1991
512382231024764479 ~1991
512387031024774079 ~1991
512396511024793039 ~1991
51240881163970819310 ~1994
512411991024823999 ~1991
512412591024825199 ~1991
512419213074515279 ~1992
512426511024853039 ~1991
512431911024863839 ~1991
51243749194726246310 ~1994
51245507409964056110 ~1995
512471118199537779 ~1993
512480391352948229711 ~1996
512482311024964639 ~1991
512492391024984799 ~1991
512492773074956639 ~1992
512500911025001839 ~1991
51250139830252251910 ~1996
512504031025008079 ~1991
512514111025028239 ~1991
512533791025067599 ~1991
512534391025068799 ~1991
512544591025089199 ~1991
Home
4.843.404 digits
e-mail
25-06-08