Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
521250111042500239 ~1991
521259594170076739 ~1993
521268013127608079 ~1992
521271711042543439 ~1991
521275494170203939 ~1993
521278614170228899 ~1993
521285511042571039 ~1991
521291511042583039 ~1991
521307591042615199 ~1991
521335191042670399 ~1991
521354274170834179 ~1993
521367831042735679 ~1991
521375115213751119 ~1993
521382831042765679 ~1991
521392911042785839 ~1991
521401911042803839 ~1991
521423333128539999 ~1992
521429031042858079 ~1991
521438031042876079 ~1991
521454591042909199 ~1991
521462991042925999 ~1991
521471631042943279 ~1991
521474991042949999 ~1991
521476431042952879 ~1991
521478711042957439 ~1991
Exponent Prime Factor Digits Year
521530191043060399 ~1991
52153369281628192710 ~1995
521533791043067599 ~1991
521538231043076479 ~1991
521541591043083199 ~1991
521562591043125199 ~1991
521563431043126879 ~1991
52159249114750347910 ~1994
521598231043196479 ~1991
521602191043204399 ~1991
521608311043216639 ~1991
521609391043218799 ~1991
521613594172908739 ~1993
521625591043251199 ~1991
521627511043255039 ~1991
521628711043257439 ~1991
521631591043263199 ~1991
521632311043264639 ~1991
521636511043273039 ~1991
521645097303031279 ~1993
521678333130069999 ~1992
521679711043359439 ~1991
521707911043415839 ~1991
52173809281738568710 ~1995
521745711043491439 ~1991
Exponent Prime Factor Digits Year
521751413130508479 ~1992
52175807511322908710 ~1995
521759874174078979 ~1993
521766133130596799 ~1992
521796231043592479 ~1991
521858511043717039 ~1991
521862231043724479 ~1991
521881791043763599 ~1991
521899191043798399 ~1991
521905431043810879 ~1991
521907111043814239 ~1991
521918475219184719 ~1993
521919111043838239 ~1991
521923911043847839 ~1991
521924533131547199 ~1992
521927333131563999 ~1992
521934111043868239 ~1991
521935431096064403111 ~1996
521942511043885039 ~1991
521964111043928239 ~1991
521964711043929439 ~1991
521967591043935199 ~1991
521979231043958479 ~1991
521991533131949199 ~1992
521997231043994479 ~1991
Exponent Prime Factor Digits Year
522001431044002879 ~1991
522004613132027679 ~1992
522006111044012239 ~1991
522009591044019199 ~1991
522050333132301999 ~1992
522051231044102479 ~1991
52205189375877360910 ~1995
522076133132456799 ~1992
522103311044206639 ~1991
522105831044211679 ~1991
522118515221185119 ~1993
522138831044277679 ~1991
522147591044295199 ~1991
522149511044299039 ~1991
522158511044317039 ~1991
522162174177297379 ~1993
522163311044326639 ~1991
522165133132990799 ~1992
522175199399153439 ~1994
522176173133057039 ~1992
522177711044355439 ~1991
52218503135768107910 ~1994
52219693156659079110 ~1994
522198591044397199 ~1991
522204111044408239 ~1991
Home
4.843.404 digits
e-mail
25-06-08