Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
526814391053628799 ~1991
526815373160892239 ~1992
526821111053642239 ~1991
526832031053664079 ~1991
526836231053672479 ~1991
526844031053688079 ~1991
526852911053705839 ~1991
526854111053708239 ~1991
526860973161165839 ~1992
526861494214891939 ~1993
526861911053723839 ~1991
526880874215046979 ~1993
526884294215074339 ~1993
526897794215182339 ~1993
526902831053805679 ~1991
526904337376660639 ~1993
526931391053862799 ~1991
526952391053904799 ~1991
52696529126471669710 ~1994
526972013161832079 ~1992
526972373161834239 ~1992
52697803221330772710 ~1995
526978911053957839 ~1991
526986831053973679 ~1991
526991835269918319 ~1993
Exponent Prime Factor Digits Year
526996311053992639 ~1991
526997991053995999 ~1991
527015533162093199 ~1992
52701793115943944710 ~1994
527032014216256099 ~1993
527040231054080479 ~1991
527041911054083839 ~1991
527045631054091279 ~1991
527058831054117660111 ~1996
527066631054133279 ~1991
527068311054136639 ~1991
527077573162465439 ~1992
527077791054155599 ~1991
52708727347877598310 ~1995
527099631054199279 ~1991
52710107263550535110 ~1995
527117879488121679 ~1994
527141214217129699 ~1993
527154231054308479 ~1991
527160711054321439 ~1991
527162631054325279 ~1991
527170733163024399 ~1992
527175591054351199 ~1991
527180337380524639 ~1993
527185311054370639 ~1991
Exponent Prime Factor Digits Year
527186511054373039 ~1991
527217591054435199 ~1991
527219391054438799 ~1991
527224791054449599 ~1991
52723861537783382310 ~1995
527253773163522639 ~1992
527255813163534879 ~1992
527275374218202979 ~1993
527275791054551599 ~1991
527289973163739839 ~1992
527314613163887679 ~1992
527316831054633679 ~1991
527327479491894479 ~1994
527345333164071999 ~1992
527361973164171839 ~1992
527362733164176399 ~1992
527363991054727999 ~1991
527370111054740239 ~1991
527385711054771439 ~1991
527392635273926319 ~1993
527396511054793039 ~1991
527410791054821599 ~1991
527418831054837679 ~1991
527419333164515999 ~1992
527424711054849439 ~1991
Exponent Prime Factor Digits Year
527444031054888079 ~1991
527456031054912079 ~1991
527472231054944479 ~1991
527482497384754879 ~1993
527496111054992239 ~1991
527515911055031839 ~1991
527545431055090879 ~1991
527553894220431139 ~1993
527554275275542719 ~1993
527567991055135999 ~1991
527568078441089139 ~1994
52757059432607883910 ~1995
527591031055182079 ~1991
527591391055182799 ~1991
527593314220746499 ~1993
527595373165572239 ~1992
527612773165676639 ~1992
527623515276235119 ~1993
527632133165792799 ~1992
527634231055268479 ~1991
527640591055281199 ~1991
527646231055292479 ~1991
527651031055302079 ~1991
527655711055311439 ~1991
527661831055323679 ~1991
Home
4.843.404 digits
e-mail
25-06-08