Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1003638832007277679 ~1993
1003654936021929599 ~1995
1003694992007389999 ~1993
1003698592007397199 ~1993
1003726312007452639 ~1993
1003745698029965539 ~1995
1003750912007501839 ~1993
1003755592007511199 ~1993
1003758232007516479 ~1993
1003771912007543839 ~1993
1003844992007689999 ~1993
1003856512007713039 ~1993
100387961321241475310 ~1996
1003936616023619679 ~1995
1003950832007901679 ~1993
1003975432007950879 ~1993
1004002078032016579 ~1995
1004015032008030079 ~1993
1004023432008046879 ~1993
100402411160643857710 ~1996
1004024992008049999 ~1993
1004029312008058639 ~1993
1004062192008124399 ~1993
100409611100409611110 ~1995
1004102632008205279 ~1993
Exponent Prime Factor Digits Year
1004112112008224239 ~1993
1004169712008339439 ~1993
100417607180751692710 ~1996
1004250232008500479 ~1993
1004257192008514399 ~1993
1004290192008580399 ~1993
100430761220947674310 ~1996
1004339416026036479 ~1995
1004351032008702079 ~1993
1004388232008776479 ~1993
1004401432008802879 ~1993
1004402392008804799 ~1993
1004446078035568579 ~1995
1004467432008934879 ~1993
1004476432008952879 ~1993
1004477998035823939 ~1995
100448923241077415310 ~1996
1004491792008983599 ~1993
100450351662972316710 ~1997
1004503792009007599 ~1993
1004513032009026079 ~1993
1004551192009102399 ~1993
1004576032009152079 ~1993
100458671261192544710 ~1996
1004624512009249039 ~1993
Exponent Prime Factor Digits Year
100464443321486217710 ~1996
1004719912009439839 ~1993
100474877562659311310 ~1997
1004764792009529599 ~1993
1004770991205725188111 ~1998
1004772616028635679 ~1995
1004773192009546399 ~1993
1004775898038207139 ~1995
1004799416028796479 ~1995
1004802832009605679 ~1993
1004821312009642639 ~1993
1004857192009714399 ~1993
1004865592009731199 ~1993
100486651160778641710 ~1996
100486663100486663110 ~1995
1004868112009736239 ~1993
1004874232009748479 ~1993
1004883832009767679 ~1993
1004887498039099939 ~1995
1004888416029330479 ~1995
1004901712009803439 ~1993
1004904712009809439 ~1993
1004925712009851439 ~1993
1004928832009857679 ~1993
1004936632009873279 ~1993
Exponent Prime Factor Digits Year
1004957818039662499 ~1995
100499281221098418310 ~1996
1005052912010105839 ~1993
100508311100508311110 ~1995
1005121932472599947911 ~1999
100513597160821755310 ~1996
1005138232010276479 ~1993
100514429381954830310 ~1997
1005148912010297839 ~1993
1005217192010434399 ~1993
1005227032010454079 ~1993
1005248992010497999 ~1993
1005267592010535199 ~1993
1005270832010541679 ~1993
1005296512010593039 ~1993
1005312832010625679 ~1993
1005317032010634079 ~1993
1005348778042790179 ~1995
1005350032010700079 ~1993
1005351592010703199 ~1993
1005351736032110399 ~1995
1005355312010710639 ~1993
1005411232010822479 ~1993
1005427136032562799 ~1995
1005453832010907679 ~1993
Home
4.739.325 digits
e-mail
25-04-20