Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1029202432058404879 ~1994
1029225592058451199 ~1994
1029267536175605199 ~1995
1029307312058614639 ~1994
1029335032058670079 ~1994
1029360776176164639 ~1995
1029430312058860639 ~1994
1029437512058875039 ~1994
1029468136176808799 ~1995
1029486232058972479 ~1994
1029489712058979439 ~1994
102952589247086213710 ~1996
1029553936177323599 ~1995
1029554392059108799 ~1994
1029563416177380479 ~1995
1029623512059247039 ~1994
1029639232059278479 ~1994
1029646432059292879 ~1994
1029660418237283299 ~1995
1029662992059325999 ~1994
1029671032059342079 ~1994
1029691432059382879 ~1994
1029692392059384799 ~1994
1029694792059389599 ~1994
1029703976178223839 ~1995
Exponent Prime Factor Digits Year
1029707392059414799 ~1994
1029729592059459199 ~1994
1029800992059601999 ~1994
1029840832059681679 ~1994
1029851518238812099 ~1995
1029861832059723679 ~1994
1029945376179672239 ~1995
102996379102996379110 ~1995
1029975016179850079 ~1995
1029989392059978799 ~1994
1029995936179975599 ~1995
1030012016180072079 ~1995
1030017712060035439 ~1994
103002233144203126310 ~1996
1030022992060045999 ~1994
1030050112060100239 ~1994
1030052392060104799 ~1994
1030082992060165999 ~1994
1030092712060185439 ~1994
1030094632060189279 ~1994
103011197144215675910 ~1996
1030113232060226479 ~1994
1030117312060234639 ~1994
103013969144219556710 ~1996
1030163512060327039 ~1994
Exponent Prime Factor Digits Year
1030195192060390399 ~1994
103020457309061371110 ~1996
103020677144228947910 ~1996
1030265512060531039 ~1994
1030302232060604479 ~1994
1030346936182081599 ~1995
1030480312060960639 ~1994
1030481032060962079 ~1994
1030502032061004079 ~1994
1030502632061005279 ~1994
1030531432061062879 ~1994
1030582432061164879 ~1994
1030618312061236639 ~1994
1030659832061319679 ~1994
1030685512061371039 ~1994
1030701112061402239 ~1994
1030733392061466799 ~1994
1030740712061481439 ~1994
1030742992061485999 ~1994
1030783976184703839 ~1995
103081393164930228910 ~1996
1030815712061631439 ~1994
1030854832061709679 ~1994
1030857712061715439 ~1994
103087639103087639110 ~1995
Exponent Prime Factor Digits Year
1030890232061780479 ~1994
1030905112061810239 ~1994
1030908112061816239 ~1994
1030944712061889439 ~1994
103095943103095943110 ~1995
1030970536185823199 ~1995
1031016712062033439 ~1994
103101871103101871110 ~1995
1031020336186121999 ~1995
1031031832062063679 ~1994
1031043592062087199 ~1994
103104943164967908910 ~1996
1031081632062163279 ~1994
103109411185596939910 ~1996
1031108511319818892911 ~1998
1031114536186687199 ~1995
1031153992062307999 ~1994
103118173164989076910 ~1996
1031214712062429439 ~1994
1031221432062442879 ~1994
1031251816187510879 ~1995
1031256112062512239 ~1994
1031257792062515599 ~1994
1031264816187588879 ~1995
1031283592062567199 ~1994
Home
4.739.325 digits
e-mail
25-04-20