Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1372935712745871439 ~1995
1372949992745899999 ~1995
1372990338237941999 ~1996
1373104432746208879 ~1995
1373107792746215599 ~1995
1373133592746267199 ~1995
1373175712746351439 ~1995
1373236432746472879 ~1995
1373248792746497599 ~1995
1373255113295812264111 ~2000
1373317312746634639 ~1995
1373332432746664879 ~1995
1373345218240071279 ~1996
137334529302135963910 ~1997
1373382418240294479 ~1996
1373413432746826879 ~1995
1373432032746864079 ~1995
1373446312746892639 ~1995
1373490112746980239 ~1995
1373558178241349039 ~1996
1373563432747126879 ~1995
1373564032747128079 ~1995
137356553329655727310 ~1997
1373572938241437599 ~1996
1373589832747179679 ~1995
Exponent Prime Factor Digits Year
1373660632747321279 ~1995
1373709112747418239 ~1995
1373710432747420879 ~1995
1373715232747430479 ~1995
137374697109899757710 ~1996
1373772832747545679 ~1995
1373788312747576639 ~1995
1373828512747657039 ~1995
1373830792747661599 ~1995
1373832178242993039 ~1996
1373918992747837999 ~1995
1373920432747840879 ~1995
1373924992747849999 ~1995
1373931832747863679 ~1995
1373959912747919839 ~1995
1373980432747960879 ~1995
1374067192748134399 ~1995
1374076192748152399 ~1995
137408851137408851110 ~1996
1374129232748258479 ~1995
1374145912748291839 ~1995
1374194178245165039 ~1996
137423519109938815310 ~1996
1374241912748483839 ~1995
1374293992748587999 ~1995
Exponent Prime Factor Digits Year
1374296818245780879 ~1996
1374320512748641039 ~1995
137438069192413296710 ~1997
137440519137440519110 ~1996
1374420832748841679 ~1995
1374442312748884639 ~1995
137446913989617773710 ~1998
1374470392748940799 ~1995
1374525592749051199 ~1995
1374567832749135679 ~1995
1374586792749173599 ~1995
1374612112749224239 ~1995
1374683392749366799 ~1995
1374696592749393199 ~1995
1374698512749397039 ~1995
137470001109976000910 ~1996
1374718192749436399 ~1995
137472371109977896910 ~1996
1374755992749511999 ~1995
1374770578248623439 ~1996
1374816112749632239 ~1995
137482129329957109710 ~1997
1374838312749676639 ~1995
1374944032749888079 ~1995
1374954112749908239 ~1995
Exponent Prime Factor Digits Year
1375044592750089199 ~1995
1375061512750123039 ~1995
1375063312750126639 ~1995
1375080112750160239 ~1995
1375165912750331839 ~1995
137518813220030100910 ~1997
1375204312750408639 ~1995
1375206712750413439 ~1995
1375222792750445599 ~1995
137527363220043780910 ~1997
1375298392750596799 ~1995
1375372432750744879 ~1995
1375396912750793839 ~1995
1375406032750812079 ~1995
1375433032750866079 ~1995
1375457992750915999 ~1995
137552087330125008910 ~1997
1375535512751071039 ~1995
1375561312751122639 ~1995
1375615312751230639 ~1995
1375635112751270239 ~1995
1375658392751316799 ~1995
137570369192598516710 ~1997
1375747192751494399 ~1995
1375747792751495599 ~1995
Home
4.739.325 digits
e-mail
25-04-20