Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1708031513416063039 ~1995
1708039313416078639 ~1995
1708048913416097839 ~1995
170808577683234308110 ~1998
1708173593416347199 ~1995
170819507854097535110 ~1999
1708275713416551439 ~1995
170829641102497784710 ~1996
1708321313416642639 ~1995
170836453102501871910 ~1996
170841563717534564710 ~1999
1708416593416833199 ~1995
1708433393416866799 ~1995
1708433993416867999 ~1995
170845889136676711310 ~1997
1708492193416984399 ~1995
1708508993417017999 ~1995
1708558193417116399 ~1995
1708631633417263279 ~1995
1708637993417275999 ~1995
1708653233417306479 ~1995
170873057102523834310 ~1996
1708734713417469439 ~1995
170875247410100592910 ~1998
1708769633417539279 ~1995
Exponent Prime Factor Digits Year
170877173102526303910 ~1996
1708772633417545279 ~1995
1708810193417620399 ~1995
1708813913417627839 ~1995
1708875233417750479 ~1995
170895553102537331910 ~1996
170900087136720069710 ~1997
1709003513418007039 ~1995
1709008433418016879 ~1995
1709116793418233599 ~1995
1709125193418250399 ~1995
1709179313418358639 ~1995
170923381512770143110 ~1998
170929739136743791310 ~1997
1709371913418743839 ~1995
1709391833418783679 ~1995
1709395913418791839 ~1995
1709442233418884479 ~1995
1709453993418907999 ~1995
1709456393418912799 ~1995
1709536313419072639 ~1995
1709690033419380079 ~1995
170969219547101500910 ~1998
1709697833419395679 ~1995
1709706713419413439 ~1995
Exponent Prime Factor Digits Year
170974567273559307310 ~1997
1709790593419581199 ~1995
1709798393419596799 ~1995
170987321136789856910 ~1997
1709923219541371511911 ~2001
1709983193419966399 ~1995
170998621102599172710 ~1996
171007541102604524710 ~1996
1710196193420392399 ~1995
1710284393420568799 ~1995
1710314393420628799 ~1995
171032791273652465710 ~1997
1710355193420710399 ~1995
171035617273656987310 ~1997
171043261102625956710 ~1996
1710435833420871679 ~1995
1710517193421034399 ~1995
171052577102631546310 ~1996
1710527513421055039 ~1995
1710563393421126799 ~1995
1710563513421127039 ~1995
1710602513421205039 ~1995
1710623993421247999 ~1995
1710644033421288079 ~1995
1710645593421291199 ~1995
Exponent Prime Factor Digits Year
1710658313421316639 ~1995
1710664193421328399 ~1995
1710694433421388879 ~1995
171070897102642538310 ~1996
171075257136860205710 ~1997
171084421102650652710 ~1996
171090511273744817710 ~1997
1710922793421845599 ~1995
171095833102657499910 ~1996
1710974993421949999 ~1995
1711031993422063999 ~1995
1711035113422070239 ~1995
1711194233422388479 ~1995
1711207913422415839 ~1995
1711233113422466239 ~1995
171124607136899685710 ~1997
1711252313422504639 ~1995
171130009410712021710 ~1998
1711314833422629679 ~1995
1711315313422630639 ~1995
1711348193422696399 ~1995
171136109136908887310 ~1997
171136597273818555310 ~1997
1711372313422744639 ~1995
1711525433423050879 ~1995
Home
4.739.325 digits
e-mail
25-04-20