Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1853994713707989439 ~1996
185402521111241512710 ~1997
185415007333747012710 ~1998
185416339333749410310 ~1998
185421727185421727110 ~1997
185427779148342223310 ~1997
185434331148347464910 ~1997
185434477111260686310 ~1997
185438327148350661710 ~1997
1854469793708939599 ~1996
1854473033708946079 ~1996
1854477113708954239 ~1996
185449219185449219110 ~1997
1854497393708994799 ~1996
1854506633709013279 ~1996
1854529193709058399 ~1996
1854529313709058639 ~1996
1854568193709136399 ~1996
185459507148367605710 ~1997
1854617513709235039 ~1996
1854677033709354079 ~1996
185469871185469871110 ~1997
1854801593709603199 ~1996
1854814793709629599 ~1996
1854991313709982639 ~1996
Exponent Prime Factor Digits Year
1855080233710160479 ~1996
185508497445220392910 ~1998
1855091393710182799 ~1996
1855171913710343839 ~1996
185517757111310654310 ~1997
185518013259725218310 ~1998
1855217513710435039 ~1996
185524421148419536910 ~1997
1855266833710533679 ~1996
1855272713710545439 ~1996
185538043185538043110 ~1997
1855432793710865599 ~1996
1855464113710928239 ~1996
1855509233711018479 ~1996
185553077259774307910 ~1998
1855541633711083279 ~1996
185555947185555947110 ~1997
1855571393711142799 ~1996
1855613993711227999 ~1996
1855618193711236399 ~1996
1855624913711249839 ~1996
1855635372226762444111 ~2000
1855648913711297839 ~1996
185569873111341923910 ~1997
185570471334026847910 ~1998
Exponent Prime Factor Digits Year
185570519148456415310 ~1997
1855730513711461039 ~1996
1855739033711478079 ~1996
1855823633711647279 ~1996
185584169148467335310 ~1997
185588729148470983310 ~1997
1855905713711811439 ~1996
1855923713711847439 ~1996
1855979633711959279 ~1996
1855986833711973679 ~1996
185605361111363216710 ~1997
1856200313712400639 ~1996
1856214833712429679 ~1996
1856215433712430879 ~1996
1856227433712454879 ~1996
185622919334121254310 ~1998
185624137111374482310 ~1997
185624627482624030310 ~1998
1856249033712498079 ~1996
185634907742539628110 ~1999
1856360633712721279 ~1996
1856418713712837439 ~1996
185642299185642299110 ~1997
1856434313712868639 ~1996
185643707334158672710 ~1998
Exponent Prime Factor Digits Year
185644111779705266310 ~1999
1856469593712939199 ~1996
1856483993712967999 ~1996
185648941297038305710 ~1998
185649617111389770310 ~1997
1856537033713074079 ~1996
185664173111398503910 ~1997
1856649713713299439 ~1996
1856650433713300879 ~1996
1856701433713402879 ~1996
1856755193713510399 ~1996
1856763113713526239 ~1996
1856872313713744639 ~1996
1856880713713761439 ~1996
185688313111412987910 ~1997
185691679185691679110 ~1997
1856921633713843279 ~1996
18569340711884378048112 ~2002
1856934113713868239 ~1996
1856965793713931599 ~1996
1856966633713933279 ~1996
185703487185703487110 ~1997
185703653111422191910 ~1997
1857064313714128639 ~1996
185706743445696183310 ~1998
Home
4.739.325 digits
e-mail
25-04-20