Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1709983193419966399 ~1995
170998621102599172710 ~1996
171007541102604524710 ~1996
1710196193420392399 ~1995
1710284393420568799 ~1995
1710314393420628799 ~1995
171032791273652465710 ~1998
1710355193420710399 ~1995
171035617273656987310 ~1998
171043261102625956710 ~1996
1710435833420871679 ~1995
1710517193421034399 ~1995
171052577102631546310 ~1996
1710527513421055039 ~1995
1710563393421126799 ~1995
1710563513421127039 ~1995
1710602513421205039 ~1995
1710623993421247999 ~1995
1710644033421288079 ~1995
1710645593421291199 ~1995
1710658313421316639 ~1995
1710664193421328399 ~1995
1710694433421388879 ~1995
171070897102642538310 ~1996
171075257136860205710 ~1997
Exponent Prime Factor Digits Year
171084421102650652710 ~1996
171090511273744817710 ~1998
1710922793421845599 ~1995
171095833102657499910 ~1996
1710974993421949999 ~1995
1711031993422063999 ~1995
1711035113422070239 ~1995
1711194233422388479 ~1995
1711207913422415839 ~1995
1711233113422466239 ~1995
171124607136899685710 ~1997
1711252313422504639 ~1995
1711288793422577599 ~1995
171130009410712021710 ~1998
1711314833422629679 ~1995
1711315313422630639 ~1995
1711348193422696399 ~1995
171136109136908887310 ~1997
171136597273818555310 ~1998
1711372313422744639 ~1995
171138119136910495310 ~1997
1711525433423050879 ~1995
171154177102692506310 ~1996
1711555313423110639 ~1995
1711612793423225599 ~1995
Exponent Prime Factor Digits Year
171162119136929695310 ~1997
171162973102697783910 ~1996
171173111136938488910 ~1997
1711733633423467279 ~1995
1711737713423475439 ~1995
171175573102705343910 ~1996
1711794713423589439 ~1995
171180479855902395110 ~1999
1711853513423707039 ~1995
171185843445083191910 ~1998
171193637239671091910 ~1997
171194707410867296910 ~1998
1711952393423904799 ~1995
1711962713423925439 ~1995
1711967993423935999 ~1995
171197141136957712910 ~1997
1711999671129919782311 ~1999
1712181233424362479 ~1995
171235873376718920710 ~1998
171241979410980749710 ~1998
1712461913424923839 ~1995
1712465993424931999 ~1995
1712525633425051279 ~1995
1712543513425087039 ~1995
1712571713425143439 ~1995
Exponent Prime Factor Digits Year
1712582393425164799 ~1995
171265217137012173710 ~1997
171268813102761287910 ~1996
1712729033425458079 ~1995
171277289137021831310 ~1997
171281381102768828710 ~1996
1712863313425726639 ~1995
171290857102774514310 ~1996
171292421102775452710 ~1996
1712930993425861999 ~1995
1712975513425951039 ~1995
1712986193425972399 ~1995
171300671137040536910 ~1997
1713054713426109439 ~1995
171308491171308491110 ~1997
171311293102786775910 ~1996
1713330233426660479 ~1995
1713334433426668879 ~1995
1713368393426736799 ~1995
1713377033426754079 ~1995
1713452993426905999 ~1995
1713458513426917039 ~1995
171346117102807670310 ~1996
1713491513426983039 ~1995
1713495233426990479 ~1995
Home
4.858.378 digits
e-mail
25-06-15