Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1800187913600375839 ~1995
1800199433600398879 ~1995
180022217108013330310 ~1997
1800248633600497279 ~1995
180031829144025463310 ~1997
1800321233600642479 ~1995
1800329771152211052911 ~1999
180037279324067102310 ~1998
1800380633600761279 ~1995
1800437633600875279 ~1995
1800460193600920399 ~1995
1800538313601076639 ~1995
1800574313601148639 ~1995
180058247144046597710 ~1997
180063859180063859110 ~1997
180065849144052679310 ~1997
1800720593601441199 ~1995
1800836393601672799 ~1995
1800868913601737839 ~1995
1800936593601873199 ~1995
1800966713601933439 ~1995
1800988193601976399 ~1995
1801078913602157839 ~1995
180120961540362883110 ~1998
1801236233602472479 ~1995
Exponent Prime Factor Digits Year
1801288913602577839 ~1995
1801387193602774399 ~1995
180139153108083491910 ~1997
180147421288235873710 ~1998
1801546793603093599 ~1995
1801572833603145679 ~1995
180164473108098683910 ~1997
1801652033603304079 ~1995
1801798193603596399 ~1995
1801814993603629999 ~1995
1801896713603793439 ~1995
1801936793603873599 ~1995
180194177144155341710 ~1997
180199709144159767310 ~1997
1802059793604119599 ~1995
1802097593604195199 ~1995
180212863288340580910 ~1998
1802184593604369199 ~1995
180222941144178352910 ~1997
1802231633604463279 ~1995
1802235233604470479 ~1995
1802282633604565279 ~1995
1802290011009282405711 ~1999
1802294993604589999 ~1995
1802319833604639679 ~1995
Exponent Prime Factor Digits Year
1802329193604658399 ~1995
1802350913604701839 ~1995
1802393033604786079 ~1995
1802416091261691263111 ~1999
180249857108149914310 ~1997
1802513033605026079 ~1995
1802542793605085599 ~1995
180255697108153418310 ~1997
1802557913605115839 ~1995
1802608913605217839 ~1995
180263987144211189710 ~1997
1802744633605489279 ~1995
1802911193605822399 ~1995
1802940833605881679 ~1995
180303637108182182310 ~1997
1803037313606074639 ~1995
1803051593606103199 ~1995
1803073433606146879 ~1995
180307957108184774310 ~1997
1803096113606192239 ~1995
1803108593606217199 ~1995
1803129115193011836911 ~2001
180316379144253103310 ~1997
180320177108192106310 ~1997
1803234833606469679 ~1995
Exponent Prime Factor Digits Year
180339839144271871310 ~1997
1803411233606822479 ~1995
1803450593606901199 ~1995
180346861396763094310 ~1998
1803552113607104239 ~1995
1803593033607186079 ~1995
1803604193607208399 ~1995
1803645593607291199 ~1995
1803695513607391039 ~1995
180370753108222451910 ~1997
1803741233607482479 ~1995
1803804113607608239 ~1995
180383041829761988710 ~1999
1803842513607685039 ~1995
1803876113607752239 ~1995
1803968993607937999 ~1995
180398861108239316710 ~1997
1804021433608042879 ~1995
180405857108243514310 ~1997
1804070633608141279 ~1995
1804120913608241839 ~1995
180412181108247308710 ~1997
1804172033608344079 ~1995
180421531180421531110 ~1997
1804231793608463599 ~1995
Home
4.843.404 digits
e-mail
25-06-08