Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1950963713901927439 ~1996
195108061312172897710 ~1998
1951153913902307839 ~1996
1951175993902351999 ~1996
195124367156099493710 ~1997
1951271993902543999 ~1996
1951304993902609999 ~1996
1951426913902853839 ~1996
195144431624462179310 ~1999
195150257156120205710 ~1997
1951546913903093839 ~1996
195162437156129949710 ~1997
195168613117101167910 ~1997
1951690313903380639 ~1996
1951700513903401039 ~1996
1951703033903406079 ~1996
1951756793903513599 ~1996
195179659195179659110 ~1997
195180919351325654310 ~1998
195181061156144848910 ~1997
1951823033903646079 ~1996
1951859993903719999 ~1996
1951953233903906479 ~1996
195202873117121723910 ~1997
1952054633904109279 ~1996
Exponent Prime Factor Digits Year
1952070593904141199 ~1996
1952141393904282799 ~1996
1952162993904325999 ~1996
195219391195219391110 ~1997
195219559351395206310 ~1998
195222539156178031310 ~1997
1952235191405609336911 ~2000
1952295113904590239 ~1996
195236257117141754310 ~1997
1952376833904753679 ~1996
195245233429539512710 ~1998
1952469233904938479 ~1996
1952478593904957199 ~1996
1952512913905025839 ~1996
1952513513905027039 ~1996
195253691156202952910 ~1997
1952582633905165279 ~1996
195260867156208693710 ~1997
195263027156210421710 ~1997
1952633393905266799 ~1996
1952692193905384399 ~1996
1952767433905534879 ~1996
1952880833905761679 ~1996
1952922113905844239 ~1996
195304303195304303110 ~1997
Exponent Prime Factor Digits Year
195307097117184258310 ~1997
1953145433906290879 ~1996
1953184193906368399 ~1996
195318577117191146310 ~1997
1953193433906386879 ~1996
195322937117193762310 ~1997
195327941117196764710 ~1997
1953310433906620879 ~1996
195332833117199699910 ~1997
1953341033906682079 ~1996
1953356393906712799 ~1996
195336403195336403110 ~1997
1953438713906877439 ~1996
195352901117211740710 ~1997
195355019351639034310 ~1998
1953617033907234079 ~1996
195371807351669252710 ~1998
1953730913907461839 ~1996
1953749513907499039 ~1996
195378893117227335910 ~1997
195386377117231826310 ~1997
1953891233907782479 ~1996
1953907433907814879 ~1996
1953941175588271746311 ~2001
195395527781582108110 ~1999
Exponent Prime Factor Digits Year
195396787312634859310 ~1998
1953993713907987439 ~1996
195406979156325583310 ~1997
1954084913908169839 ~1996
1954104833908209679 ~1996
1954212233908424479 ~1996
1954224833908449679 ~1996
1954297433908594879 ~1996
1954315313908630639 ~1996
1954468433908936879 ~1996
1954539713909079439 ~1996
1954690313909380639 ~1996
195470173430034380710 ~1998
1954706993909413999 ~1996
195475153117285091910 ~1997
1954764233909528479 ~1996
195482701430061942310 ~1998
195482801156386240910 ~1997
1954876193909752399 ~1996
1954907033909814079 ~1996
195495967351892740710 ~1998
1954970633909941279 ~1996
195499363195499363110 ~1997
195499709273699592710 ~1998
1955030393910060799 ~1996
Home
4.843.404 digits
e-mail
25-06-08