Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
196731373118038823910 ~1997
196734737275428631910 ~1998
1967404433934808879 ~1996
1967457233934914479 ~1996
1967463833934927679 ~1996
1967481593934963199 ~1996
1967493233934986479 ~1996
196749961118049976710 ~1997
1967517593935035199 ~1996
1967527193935054399 ~1996
1967556233935112479 ~1996
196758773275462282310 ~1998
1967608913935217839 ~1996
1967619233935238479 ~1996
196763201118057920710 ~1997
196767671157414136910 ~1997
1967703833935407679 ~1996
1967723633935447279 ~1996
1967746913935493839 ~1996
196782281157425824910 ~1997
1967860433935720879 ~1996
196787203196787203110 ~1997
1967874833935749679 ~1996
196787821118072692710 ~1997
1967904113935808239 ~1996
Exponent Prime Factor Digits Year
1967940113935880239 ~1996
1967958113935916239 ~1996
196798801118079280710 ~1997
1967991113935982239 ~1996
1968016913936033839 ~1996
1968167033936334079 ~1996
196843511157474808910 ~1997
1968445193936890399 ~1996
1968472193936944399 ~1996
1968478313936956639 ~1996
196849903196849903110 ~1997
196851881118111128710 ~1997
196872527157498021710 ~1997
1968889433937778879 ~1996
196890961433160114310 ~1998
1968934793937869599 ~1996
196895333118137199910 ~1997
1968995872047755704911 ~2000
196899713118139827910 ~1997
1969021193938042399 ~1996
196903123196903123110 ~1997
1969109993938219999 ~1996
196912259157529807310 ~1997
196914229590742687110 ~1999
1969273313938546639 ~1996
Exponent Prime Factor Digits Year
1969282433938564879 ~1996
196928861157543088910 ~1997
1969380833938761679 ~1996
1969416233938832479 ~1996
1969432313938864639 ~1996
1969463033938926079 ~1996
1969510193939020399 ~1996
196953283315125252910 ~1998
196953797157563037710 ~1997
1969564913939129839 ~1996
196956887472696528910 ~1998
1969584833939169679 ~1996
1969614233939228479 ~1996
1969736033939472079 ~1996
196973653118184191910 ~1997
196985981118191588710 ~1997
196993079630377852910 ~1999
1969937993939875999 ~1996
1969941113939882239 ~1996
1969993313939986639 ~1996
1970027033940054079 ~1996
1970151113940302239 ~1996
1970167793940335599 ~1996
1970196593940393199 ~1996
1970286411103360389711 ~1999
Exponent Prime Factor Digits Year
1970321513940643039 ~1996
1970327633940655279 ~1996
197032861118219716710 ~1997
197033099157626479310 ~1997
1970409233940818479 ~1996
1970455913940911839 ~1996
197046517118227910310 ~1997
197046713118228027910 ~1997
1970537393941074799 ~1996
197053819669982984710 ~1999
1970555393941110799 ~1996
197065249433543547910 ~1998
197068093118240855910 ~1997
1970731433941462879 ~1996
1970822513941645039 ~1996
1970908913941817839 ~1996
197094377157675501710 ~1997
1970978633941957279 ~1996
1970991833941983679 ~1996
1971091793942183599 ~1996
1971100793942201599 ~1996
197112053118267231910 ~1997
1971124913942249839 ~1996
197120893118272535910 ~1997
1971216411103881189711 ~1999
Home
4.843.404 digits
e-mail
25-06-08