Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2206672314413344639 ~1996
2206750434413500879 ~1996
2207057394414114799 ~1996
2207071914414143839 ~1996
220708493132425095910 ~1997
2207104194414208399 ~1996
220716917309003683910 ~1998
220719019220719019110 ~1998
2207233194414466399 ~1996
2207239914414479839 ~1996
220733839397320910310 ~1998
2207379834414759679 ~1996
220739837176591869710 ~1998
220742321176593856910 ~1998
220742791882971164110 ~1999
2207539434415078879 ~1996
2207657394415314799 ~1996
220766501176613200910 ~1998
2207723994415447999 ~1996
2207854794415709599 ~1996
2207930634415861279 ~1996
220793513132476107910 ~1997
2207958594415917199 ~1996
2207960634415921279 ~1996
220797509176638007310 ~1998
Exponent Prime Factor Digits Year
2207977434415954879 ~1996
220798393132479035910 ~1997
220800821132480492710 ~1997
2208172794416345599 ~1996
2208177834416355679 ~1996
2208209034416418079 ~1996
220835759176668607310 ~1998
220839737309175631910 ~1998
2208484314416968639 ~1996
2208581394417162799 ~1996
2208583434417166879 ~1996
220860953132516571910 ~1997
2208612114417224239 ~1996
2208713634417427279 ~1996
2208762611546133827111 ~2000
2208774114417548239 ~1996
2208821994417643999 ~1996
220904759176723807310 ~1998
220911191176728952910 ~1998
2209162314418324639 ~1996
220919813132551887910 ~1997
2209208034418416079 ~1996
2209362834418725679 ~1996
2209389114418778239 ~1996
220942517132565510310 ~1997
Exponent Prime Factor Digits Year
2209429131590788973711 ~2000
220951321486092906310 ~1999
2209513314419026639 ~1996
2209522194419044399 ~1996
2209546314419092639 ~1996
2209601634419203279 ~1996
220965713132579427910 ~1997
220977599176782079310 ~1998
220979441176783552910 ~1998
2209862634419725279 ~1996
2209935834419871679 ~1996
2209972914419945839 ~1996
2209997394419994799 ~1996
2210001371016600630311 ~1999
221004139221004139110 ~1998
2210048514420097039 ~1996
2210052234420104479 ~1996
221008213132604927910 ~1997
221012501132607500710 ~1997
2210126634420253279 ~1996
221014457132608674310 ~1997
2210224931591361949711 ~2000
221028257663084771110 ~1999
221031913663095739110 ~1999
2210741514421483039 ~1996
Exponent Prime Factor Digits Year
221088053132652831910 ~1997
2210949834421899679 ~1996
2211016314422032639 ~1996
2211102714422205439 ~1996
2211152634422305279 ~1996
2211235434422470879 ~1996
2211256434422512879 ~1996
221129801132677880710 ~1997
221131301132678780710 ~1997
2211348834422697679 ~1996
221140547176912437710 ~1998
2211432714422865439 ~1996
2211453114422906239 ~1996
221147947221147947110 ~1998
221152621132691572710 ~1997
2211543594423087199 ~1996
2211572634423145279 ~1996
221160697132696418310 ~1997
221168219398102794310 ~1998
2211732234423464479 ~1996
221177857132706714310 ~1997
221178673132707203910 ~1997
221191757176953405710 ~1998
221194321132716592710 ~1997
2211964914423929839 ~1996
Home
4.739.325 digits
e-mail
25-04-20