Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2239995114479990239 ~1996
2239998834479997679 ~1996
224008597358413755310 ~1998
224011393134406835910 ~1997
224012813134407687910 ~1997
224020217179216173710 ~1998
224023741134414244710 ~1997
2240261634480523279 ~1996
2240373714480747439 ~1996
2240475594480951199 ~1996
2240518794481037599 ~1996
2240591634481183279 ~1996
2240621994481243999 ~1996
2240656194481312399 ~1996
2240659992912857987111 ~2001
2240688114481376239 ~1996
2240840712375291152711 ~2000
2240870634481741279 ~1996
2241040434482080879 ~1996
2241061194482122399 ~1996
2241073914482147839 ~1996
22412117910399222705712 ~2002
2241221034482442079 ~1996
2241237714482475439 ~1996
224127259941334487910 ~1999
Exponent Prime Factor Digits Year
2241301572824039978311 ~2001
2241351114482702239 ~1996
224137013134482207910 ~1997
2241470394482940799 ~1996
2241517434483034879 ~1996
224152261134491356710 ~1997
2241592914483185839 ~1996
2241635034483270079 ~1996
224164727179331781710 ~1998
2241739914483479839 ~1996
2241784031434741779311 ~2000
2241880314483760639 ~1996
224193283358709252910 ~1998
2241945714483891439 ~1996
2241958194483916399 ~1996
2242097034484194079 ~1996
2242111314484222639 ~1996
224212819224212819110 ~1998
2242133514484267039 ~1996
2242167114484334239 ~1996
2242189314484378639 ~1996
224224601134534760710 ~1997
224226377179381101710 ~1998
2242278594484557199 ~1996
2242334034484668079 ~1996
Exponent Prime Factor Digits Year
2242359714484719439 ~1996
224243443224243443110 ~1998
2242467234484934479 ~1996
224248217134548930310 ~1997
2242521234485042479 ~1996
224265857179412685710 ~1998
2242729914485459839 ~1996
2242772994485545999 ~1996
2242805994485611999 ~1996
224280887179424709710 ~1998
224286187358857899310 ~1998
2242904634485809279 ~1996
224292997134575798310 ~1997
224303623224303623110 ~1998
224311621134586972710 ~1997
2243151834486303679 ~1996
2243190594486381199 ~1996
224320753134592451910 ~1997
2243208234486416479 ~1996
2243209314486418639 ~1996
2243217114486434239 ~1996
2243284914486569839 ~1996
224335753134601451910 ~1997
2243395434486790879 ~1996
2243442594486885199 ~1996
Exponent Prime Factor Digits Year
224345777134607466310 ~1997
224347381134608428710 ~1997
2243474994486949999 ~1996
2243489514486979039 ~1996
2243508839736828322311 ~2002
224352959538447101710 ~1999
2243583834487167679 ~1996
224364451224364451110 ~1998
2243646114487292239 ~1996
2243807634487615279 ~1996
2243830314487660639 ~1996
2243845914487691839 ~1996
224396911403914439910 ~1999
224405507179524405710 ~1998
2244094914488189839 ~1996
224417381134650428710 ~1997
2244181194488362399 ~1996
2244228114488456239 ~1996
2244259914488519839 ~1996
224426359224426359110 ~1998
2244270234488540479 ~1996
2244277794488555599 ~1996
2244285114488570239 ~1996
224428777359086043310 ~1998
224435177179548141710 ~1998
Home
4.739.325 digits
e-mail
25-04-20