Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
230808607415455492710 ~1999
230809519230809519110 ~1998
2308102914616205839 ~1996
2308121394616242799 ~1996
2308139034616278079 ~1996
2308159794616319599 ~1996
2308177914616355839 ~1996
2308269834616539679 ~1996
230831203230831203110 ~1998
2308326834616653679 ~1996
2308343994616687999 ~1996
2308398594616797199 ~1996
2308483794616967599 ~1996
230865281184692224910 ~1998
2308690914617381839 ~1996
2308788114617576239 ~1996
2308861914617723839 ~1996
2308948434617896879 ~1996
230903467230903467110 ~1998
2309044194618088399 ~1996
2309155794618311599 ~1996
230915687415648236710 ~1999
2309178714618357439 ~1996
2309205834618411679 ~1996
2309206194618412399 ~1996
Exponent Prime Factor Digits Year
2309212794618425599 ~1996
2309269914618539839 ~1996
230930263230930263110 ~1998
230931007230931007110 ~1998
2309324634618649279 ~1996
230934313692802939110 ~1999
2309371314618742639 ~1996
230942177323319047910 ~1998
2309424234618848479 ~1996
2309477634618955279 ~1996
230948429184758743310 ~1998
2309488314618976639 ~1996
230949827184759861710 ~1998
2309517714619035439 ~1996
2309621394619242799 ~1996
2309694114619388239 ~1996
230973419184778735310 ~1998
2309758314619516639 ~1996
2309860434619720879 ~1996
2309891514619783039 ~1996
2309937714619875439 ~1996
2310132594620265199 ~1996
2310218634620437279 ~1996
2310227514620455039 ~1996
2310254994620509999 ~1996
Exponent Prime Factor Digits Year
2310269514620539039 ~1996
231040343739329097710 ~1999
2310579234621158479 ~1996
2310583194621166399 ~1996
2310635514621271039 ~1996
231063929693191787110 ~1999
231067219231067219110 ~1998
231074141184859312910 ~1998
231079297369726875310 ~1999
2310805194621610399 ~1996
231083417138650050310 ~1997
231088549554612517710 ~1999
2310889194621778399 ~1996
231097469184877975310 ~1998
2311033434622066879 ~1996
231103997323545595910 ~1998
2311137834622275679 ~1996
2311243194622486399 ~1996
231125171184900136910 ~1998
2311255794622511599 ~1996
231131053554714527310 ~1999
231142621138685572710 ~1997
231153421138692052710 ~1997
231161893138697135910 ~1997
2311660794623321599 ~1996
Exponent Prime Factor Digits Year
231169769184935815310 ~1998
2311699434623398879 ~1996
2311784634623569279 ~1996
2311814514623629039 ~1996
2311858194623716399 ~1996
231197573138718543910 ~1997
231199601138719760710 ~1997
231202537138721522310 ~1997
2312185794624371599 ~1996
2312191194624382399 ~1996
231220681138732408710 ~1997
2312247234624494479 ~1996
2312284434624568879 ~1996
2312341314624682639 ~1996
2312342994624685999 ~1996
2312343594624687199 ~1996
2312348514624697039 ~1996
231243553138746131910 ~1997
23124647943335590164712 ~2004
231248533138749119910 ~1997
2312533434625066879 ~1996
231258199416264758310 ~1999
231260551370016881710 ~1999
231265261138759156710 ~1997
2312684034625368079 ~1996
Home
4.843.404 digits
e-mail
25-06-08