Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2559355795118711599 ~1997
2559449995118899999 ~1997
2559497635118995279 ~1997
2559626395119252799 ~1997
2559674515119349039 ~1997
2559694315119388639 ~1997
255970573153582343910 ~1998
2559824515119649039 ~1997
2559941035119882079 ~1997
2560054435120108879 ~1997
2560067635120135279 ~1997
256008503819227209710 ~2000
2560134533072161436111 ~2001
2560213931843354029711 ~2000
2560327435120654879 ~1997
256033181153619908710 ~1998
256040441153624264710 ~1998
2560437595120875199 ~1997
256049957204839965710 ~1998
2560511995121023999 ~1997
2560528435121056879 ~1997
2560567195121134399 ~1997
2560581235121162479 ~1997
2560593835121187679 ~1997
2560599595121199199 ~1997
Exponent Prime Factor Digits Year
2560636315121272639 ~1997
2560747195121494399 ~1997
2560796995121593999 ~1997
2560822195121644399 ~1997
256090319204872255310 ~1998
2560928831075590108711 ~2000
2560995235121990479 ~1997
2561113432663557967311 ~2001
256116871461010367910 ~1999
2561221315122442639 ~1997
2561246395122492799 ~1997
2561325673944441531911 ~2001
2561348635122697279 ~1997
2561407435122814879 ~1997
2561514595123029199 ~1997
256155833153693499910 ~1998
256162147256162147110 ~1998
256177183614825239310 ~1999
2561833811229680228911 ~2000
2561853835123707679 ~1997
256185557358659779910 ~1999
2562027115124054239 ~1997
256204657153722794310 ~1998
256207877204966301710 ~1998
2562147235124294479 ~1997
Exponent Prime Factor Digits Year
2562149995124299999 ~1997
2562276835124553679 ~1997
256228633153737179910 ~1998
256251509205001207310 ~1998
256261007461269812710 ~1999
2562822835125645679 ~1997
256287319461317174310 ~1999
2562881395125762799 ~1997
2562885595125771199 ~1997
2562958435125916879 ~1997
256298437153779062310 ~1998
2562995035125990079 ~1997
2563024795126049599 ~1997
2563117915126235839 ~1997
2563211995126423999 ~1997
2563294315126588639 ~1997
2563507795127015599 ~1997
2563541515127083039 ~1997
2563607635127215279 ~1997
2563713835127427679 ~1997
256372331205097864910 ~1998
256376249205100999310 ~1998
2563790035127580079 ~1997
2563801915127603839 ~1997
2563878235127756479 ~1997
Exponent Prime Factor Digits Year
2564028715128057439 ~1997
2564125315128250639 ~1997
256417541205134032910 ~1998
2564230915128461839 ~1997
2564257315128514639 ~1997
2564259595128519199 ~1997
256427419256427419110 ~1998
256429993615431983310 ~1999
256433579205146863310 ~1998
2564461435128922879 ~1997
256446733153868039910 ~1998
2564494435128988879 ~1997
256453493153872095910 ~1998
2564550115129100239 ~1997
256458989205167191310 ~1998
2564627515129255039 ~1997
2564641195129282399 ~1997
256465567461638020710 ~1999
2564673835129347679 ~1997
256474171410358673710 ~1999
2564856235129712479 ~1997
2564878795129757599 ~1997
256489141153893484710 ~1998
2564920915129841839 ~1997
2565014035130028079 ~1997
Home
4.739.325 digits
e-mail
25-04-20