Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2581120315162240639 ~1997
2581125595162251199 ~1997
258112817206490253710 ~1998
2581307395162614799 ~1997
258132481154879488710 ~1998
2581363795162727599 ~1997
2581384315162768639 ~1997
2581423435162846879 ~1997
2581427995162855999 ~1997
258148739206518991310 ~1998
2581506115163012239 ~1997
2581507315163014639 ~1997
2581604395163208799 ~1997
258162371206529896910 ~1998
2581646395163292799 ~1997
258164833154898899910 ~1998
258167369619601685710 ~1999
2581697995163395999 ~1997
2581730395163460799 ~1997
258185549619645317710 ~1999
2581860235163720479 ~1997
2581883035163766079 ~1997
258192629206554103310 ~1998
258192989206554391310 ~1998
2581963435163926879 ~1997
Exponent Prime Factor Digits Year
2581994395163988799 ~1997
258201367258201367110 ~1998
258211663258211663110 ~1998
258214279464785702310 ~1999
2582149195164298399 ~1997
2582273515164547039 ~1997
258233141154939884710 ~1998
2582369635164739279 ~1997
2582449195164898399 ~1997
2582486035164972079 ~1997
2582548195165096399 ~1997
258256723258256723110 ~1998
2582595115165190239 ~1997
2582603395165206799 ~1997
2582626195165252399 ~1997
258266207206612965710 ~1998
258270869619850085710 ~1999
258274001154964400710 ~1998
2582770915165541839 ~1997
2582850371033140148111 ~2000
258286333154971799910 ~1998
2582960395165920799 ~1997
258301709206641367310 ~1998
258306431671596720710 ~1999
2583180595166361199 ~1997
Exponent Prime Factor Digits Year
258330277154998166310 ~1998
2583385435166770879 ~1997
2583394435166788879 ~1997
2583398635166797279 ~1997
2583421315166842639 ~1997
2583477835166955679 ~1997
2583554635167109279 ~1997
258364153155018491910 ~1998
2583659035167318079 ~1997
2583684715167369439 ~1997
258370901206696720910 ~1998
2583720835167441679 ~1997
258375479620101149710 ~1999
258377221155026332710 ~1998
2583820795167641599 ~1997
2583861715167723439 ~1997
2583914395167828799 ~1997
2583949195167898399 ~1997
2583951715167903439 ~1997
258396707206717365710 ~1998
258397889206718311310 ~1998
258404477206723581710 ~1998
258406829206725463310 ~1998
2584082395168164799 ~1997
258410093155046055910 ~1998
Exponent Prime Factor Digits Year
258411073155046643910 ~1998
2584116835168233679 ~1997
258417749206734199310 ~1998
258422513155053507910 ~1998
2584229035168458079 ~1997
2584249315168498639 ~1997
2584301035168602079 ~1997
2584443115168886239 ~1997
2584525915169051839 ~1997
2584536835169073679 ~1997
258455909206764727310 ~1998
2584623595169247199 ~1997
2584630435169260879 ~1997
2584780795169561599 ~1997
2584787515169575039 ~1997
2584867795169735599 ~1997
2584945315169890639 ~1997
2585122795170245599 ~1997
2585125195170250399 ~1997
2585153995170307999 ~1997
2585250235170500479 ~1997
2585251195170502399 ~1997
258525763620461831310 ~1999
258526109206820887310 ~1998
2585266435170532879 ~1997
Home
4.739.325 digits
e-mail
25-04-20