Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
220060327220060327110 ~1998
2200618434401236879 ~1996
220062431704199779310 ~1999
220063037176050429710 ~1998
2200645434401290879 ~1996
2200668114401336239 ~1996
2200668711760534968111 ~2000
220068217132040930310 ~1997
2200718994401437999 ~1996
220072129528173109710 ~1999
2200726314401452639 ~1996
220077929308109100710 ~1998
2200850034401700079 ~1996
2200938594401877199 ~1996
2200980411364607854311 ~2000
220106171572276044710 ~1999
2201130834402261679 ~1996
2201135394402270799 ~1996
220122641176098112910 ~1998
2201276811893098056711 ~2000
2201384034402768079 ~1996
220139951176111960910 ~1998
2201408394402816799 ~1996
2201411394402822799 ~1996
2201441034402882079 ~1996
Exponent Prime Factor Digits Year
2201512314403024639 ~1996
220163677132098206310 ~1997
2201704914403409839 ~1996
2201777994403555999 ~1996
220182539704584124910 ~1999
2201828994403657999 ~1996
2201842914403685839 ~1996
2201848794403697599 ~1996
2201870394403740799 ~1996
2201915634403831279 ~1996
220195931176156744910 ~1998
220199179220199179110 ~1998
2202099114404198239 ~1996
220212467396382440710 ~1998
220216397132129838310 ~1997
220216457132129874310 ~1997
2202189594404379199 ~1996
220219561352351297710 ~1998
2202199914404399839 ~1996
2202263514404527039 ~1996
2202270834404541679 ~1996
2202453234404906479 ~1996
220246363528591271310 ~1999
2202486834404973679 ~1996
2202638994405277999 ~1996
Exponent Prime Factor Digits Year
2202643914405287839 ~1996
2202678714405357439 ~1996
220274113132164467910 ~1997
2202762011057325764911 ~2000
220279481132167688710 ~1997
2202827634405655279 ~1996
22028626710221282788912 ~2002
2202898314405796639 ~1996
2202936114405872239 ~1996
2202955914405911839 ~1996
2202966834405933679 ~1996
220300313132180187910 ~1997
2203058034406116079 ~1996
220310533660931599110 ~1999
2203108194406216399 ~1996
2203132314406264639 ~1996
2203147795287554696111 ~2001
2203178034406356079 ~1996
2203334994406669999 ~1996
2203335594406671199 ~1996
220338073484743760710 ~1999
2203390794406781599 ~1996
220339151176271320910 ~1998
2203480816301955116711 ~2001
220357387220357387110 ~1998
Exponent Prime Factor Digits Year
220363987220363987110 ~1998
220364057132218434310 ~1997
220367711176294168910 ~1998
2203682994407365999 ~1996
220371869308520616710 ~1998
220377961132226776710 ~1997
2203783314407566639 ~1996
220384421132230652710 ~1997
2203865394407730799 ~1996
220389691220389691110 ~1998
2203975194407950399 ~1996
2204083194408166399 ~1996
2204125794408251599 ~1996
220414393132248635910 ~1997
220414939220414939110 ~1998
2204204394408408799 ~1996
2204273514408547039 ~1996
2204331594408663199 ~1996
220440841132264504710 ~1997
220441777132265066310 ~1997
220453967396817140710 ~1998
220454263220454263110 ~1998
2204607834409215679 ~1996
2204661531366890148711 ~2000
220466287352746059310 ~1998
Home
4.933.056 digits
e-mail
25-07-20