Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2687642995375285999 ~1997
2687659435375318879 ~1997
268767173161260303910 ~1998
2687683435375366879 ~1997
2687691595375383199 ~1997
2687711411075084564111 ~2000
2687723692150178952111 ~2001
268778837215023069710 ~1998
2687880835375761679 ~1997
268790441215032352910 ~1998
2687919595375839199 ~1997
2687945635375891279 ~1997
2688183235376366479 ~1997
2688408115376816239 ~1997
2688416035376832079 ~1997
2688431995376863999 ~1997
2688484795376969599 ~1997
2688566635377133279 ~1997
268861493161316895910 ~1998
268864777161318866310 ~1998
268874213161324527910 ~1998
2688882835377765679 ~1997
2688896515377793039 ~1997
2688921595377843199 ~1997
2688934315377868639 ~1997
Exponent Prime Factor Digits Year
2688962035377924079 ~1997
268896869215117495310 ~1998
2689055515378111039 ~1997
2689073395378146799 ~1997
2689075435378150879 ~1997
2689115635378231279 ~1997
2689141793226970148111 ~2001
2689194115378388239 ~1997
2689239715378479439 ~1997
2689240315378480639 ~1997
2689334995378669999 ~1997
2689350835378701679 ~1997
2689422115378844239 ~1997
2689431835378863679 ~1997
2689542235379084479 ~1997
268961311268961311110 ~1999
2689632835379265679 ~1997
268964273376549982310 ~1999
2689897195379794399 ~1997
2689987915379975839 ~1997
2689989235379978479 ~1997
2689990195379980399 ~1997
2690115595380231199 ~1997
2690221195380442399 ~1997
269040557161424334310 ~1998
Exponent Prime Factor Digits Year
2690428435380856879 ~1997
2690520715381041439 ~1997
2690538715381077439 ~1997
269065361161439216710 ~1998
2690656915381313839 ~1997
2690773315381546639 ~1997
269088059215270447310 ~1998
2690921395381842799 ~1997
2691035395382070799 ~1997
269104753592030456710 ~1999
269116973161470183910 ~1998
269124833376774766310 ~1999
269130833161478499910 ~1998
2691355435382710879 ~1997
2691365995382731999 ~1997
2691432115382864239 ~1997
269147477161488486310 ~1998
2691528115383056239 ~1997
269163577161498146310 ~1998
2691685915383371839 ~1997
2691687715383375439 ~1997
2691698635383397279 ~1997
269178779215343023310 ~1998
2691935035383870079 ~1997
2691964915383929839 ~1997
Exponent Prime Factor Digits Year
269205817161523490310 ~1998
269207683269207683110 ~1999
269216683646120039310 ~1999
269225401430760641710 ~1999
2692273795384547599 ~1997
269229101215383280910 ~1998
2692320595384641199 ~1997
2692347235384694479 ~1997
2692406635384813279 ~1997
2692420915384841839 ~1997
2692519195385038399 ~1997
2692546315385092639 ~1997
2692621315385242639 ~1997
269269061215415248910 ~1998
2692834915385669839 ~1997
2692880035385760079 ~1997
269289941215431952910 ~1998
2692909915385819839 ~1997
2692948915385897839 ~1997
2693084995386169999 ~1997
2693114995386229999 ~1997
269312287484762116710 ~1999
2693176195386352399 ~1997
2693267035386534079 ~1997
2693284915386569839 ~1997
Home
4.739.325 digits
e-mail
25-04-20