Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
270542219216433775310 ~1998
2705618395411236799 ~1997
2705693035411386079 ~1997
2705721115411442239 ~1997
270580199216464159310 ~1998
2705839915411679839 ~1997
2705846035411692079 ~1997
270586931865878179310 ~2000
2705899195411798399 ~1997
2705940595411881199 ~1997
2705960995411921999 ~1997
270606101162363660710 ~1998
2706068871515398567311 ~2000
2706198835412397679 ~1997
270622613162373567910 ~1998
2706263515412527039 ~1997
270633161216506528910 ~1998
2706429595412859199 ~1997
270645413162387247910 ~1998
270646967216517573710 ~1998
2706479995412959999 ~1997
2706542395413084799 ~1997
2706596635413193279 ~1997
2706664795413329599 ~1997
270667051270667051110 ~1999
Exponent Prime Factor Digits Year
2706712315413424639 ~1997
2706717835413435679 ~1997
2706857035413714079 ~1997
2706963235413926479 ~1997
2707011115414022239 ~1997
2707035235414070479 ~1997
2707146835414293679 ~1997
270720641162432384710 ~1998
2707350715414701439 ~1997
2707364635414729279 ~1997
270736573162441943910 ~1998
2707482595414965199 ~1997
2707512235415024479 ~1997
270752437162451462310 ~1998
2707579195415158399 ~1997
2707670995415341999 ~1997
270769481162461688710 ~1998
270771643433234628910 ~1999
270774859920634520710 ~2000
270780733812342199110 ~2000
2707831195415662399 ~1997
2707854235415708479 ~1997
270790781162474468710 ~1998
270794297162476578310 ~1998
270808913162485347910 ~1998
Exponent Prime Factor Digits Year
2708115595416231199 ~1997
2708208115416416239 ~1997
2708267995416535999 ~1997
2708298595416597199 ~1997
270830207487494372710 ~1999
2708393395416786799 ~1997
270840373162504223910 ~1998
270842179270842179110 ~1999
2708453395416906799 ~1997
2708460115416920239 ~1997
270851167487532100710 ~1999
2708552515417105039 ~1997
2708601235417202479 ~1997
2708703291462699776711 ~2000
270870557162522334310 ~1998
2708792931462748182311 ~2000
2708807515417615039 ~1997
2708899915417799839 ~1997
2708922115417844239 ~1997
2708924635417849279 ~1997
270906473379269062310 ~1999
2709070795418141599 ~1997
2709145435418290879 ~1997
2709251395418502799 ~1997
2709289195418578399 ~1997
Exponent Prime Factor Digits Year
2709448795418897599 ~1997
2709554635419109279 ~1997
2709678715419357439 ~1997
2709844435419688879 ~1997
270993377216794701710 ~1998
2710083595420167199 ~1997
2710119191734476281711 ~2001
2710154995420309999 ~1997
2710164235420328479 ~1997
271032653162619591910 ~1998
2710386235420772479 ~1997
2710481395420962799 ~1997
2710532395421064799 ~1997
2710559515421119039 ~1997
2710566835421133679 ~1997
2710644115421288239 ~1997
271066157162639694310 ~1998
2710806715421613439 ~1997
271090033162654019910 ~1998
2710986235421972479 ~1997
2711005195422010399 ~1997
2711010731897707511111 ~2001
2711033515422067039 ~1997
271124681162674808710 ~1998
2711341195422682399 ~1997
Home
4.739.325 digits
e-mail
25-04-20