Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2717447171250025698311 ~2000
271744987271744987110 ~1999
2717477995434955999 ~1997
2717652835435305679 ~1997
2717672635435345279 ~1997
271778179271778179110 ~1999
2717789395435578799 ~1997
2717871191956867256911 ~2001
2717911195435822399 ~1997
2717916595435833199 ~1997
2718109195436218399 ~1997
2718120115436240239 ~1997
2718269635436539279 ~1997
2718341635436683279 ~1997
2718469315436938639 ~1997
271861853163117111910 ~1998
2718668635437337279 ~1997
271876499652503597710 ~2000
2718769195437538399 ~1997
2718820192664443786311 ~2001
2718822235437644479 ~1997
27189076711147521447112 ~2003
271891913163135147910 ~1998
2718927115437854239 ~1997
2719000195438000399 ~1997
Exponent Prime Factor Digits Year
2719071235438142479 ~1997
2719080115438160239 ~1997
2719189315438378639 ~1997
271919801163151880710 ~1998
2719237195438474399 ~1997
2719250515438501039 ~1997
2719256035438512079 ~1997
2719310635438621279 ~1997
271939709652655301710 ~2000
2719414195438828399 ~1997
271951679489513022310 ~1999
2719609435439218879 ~1997
271964237163178542310 ~1998
271966439217573151310 ~1998
271970537163182322310 ~1998
2719719715439439439 ~1997
2719750195439500399 ~1997
271976141163185684710 ~1998
2719889635439779279 ~1997
271992601163195560710 ~1998
271996553163197931910 ~1998
2719982035439964079 ~1997
2720029315440058639 ~1997
2720124235440248479 ~1997
2720125795440251599 ~1997
Exponent Prime Factor Digits Year
2720340111958644879311 ~2001
272036489217629191310 ~1998
272041697163225018310 ~1998
2720424791142578411911 ~2000
2720439235440878479 ~1997
272052457163231474310 ~1998
2720671435441342879 ~1997
272093117163255870310 ~1998
2721005995442011999 ~1997
272105993163263595910 ~1998
272108821163265292710 ~1998
272114681163268808710 ~1998
2721360715442721439 ~1997
272150621217720496910 ~1998
272151577163290946310 ~1998
2721575635443151279 ~1997
2721665995443331999 ~1997
272173001217738400910 ~1998
2721801595443603199 ~1997
272185973163311583910 ~1998
2721924115443848239 ~1997
2721985195443970399 ~1997
2722000915444001839 ~1997
2722018435444036879 ~1997
272208173163324903910 ~1998
Exponent Prime Factor Digits Year
2722088035444176079 ~1997
2722127995444255999 ~1997
2722167235444334479 ~1997
2722234915444469839 ~1997
2722299835444599679 ~1997
2722326412994559051111 ~2001
272234873653363695310 ~2000
272236801163342080710 ~1998
272241653163344991910 ~1998
2722481395444962799 ~1997
272250739272250739110 ~1999
2722539115445078239 ~1997
2722630915445261839 ~1997
2722651315445302639 ~1997
2722680115445360239 ~1997
2722742395445484799 ~1997
2722752595445505199 ~1997
272277281217821824910 ~1998
2722839835445679679 ~1997
2722843195445686399 ~1997
272303677163382206310 ~1998
2723051515446103039 ~1997
2723079235446158479 ~1997
272310091435696145710 ~1999
272312669871400540910 ~2000
Home
4.739.325 digits
e-mail
25-04-20