Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
273552871273552871110 ~1999
2735532235471064479 ~1997
273561593382986230310 ~1999
2735625115471250239 ~1997
2735689795471379599 ~1997
2735771635471543279 ~1997
2735796715471593439 ~1997
2735803435471606879 ~1997
273584033164150419910 ~1998
273584581164150748710 ~1998
2735889115471778239 ~1997
273597013164158207910 ~1998
2735987635471975279 ~1997
2736039835472079679 ~1997
2736076614815494833711 ~2002
2736157915472315839 ~1997
2736193195472386399 ~1997
2736271315472542639 ~1997
273629341164177604710 ~1998
2736308035472616079 ~1997
2736416635472833279 ~1997
2736496435472992879 ~1997
2736528715473057439 ~1997
2736673795473347599 ~1997
273668177164200906310 ~1998
Exponent Prime Factor Digits Year
2736730195473460399 ~1997
2736776995473553999 ~1997
2736797515473595039 ~1997
2736818395473636799 ~1997
2736902995473805999 ~1997
2736905035473810079 ~1997
2736945115473890239 ~1997
273694607218955685710 ~1998
2737011715474023439 ~1997
2737031931970662989711 ~2001
2737083595474167199 ~1997
273708733437933972910 ~1999
2737092835474185679 ~1997
2737098235474196479 ~1997
273716111218972888910 ~1998
273717571273717571110 ~1999
2737212715474425439 ~1997
2737296715474593439 ~1997
2737330795474661599 ~1997
273737413164242447910 ~1998
2737392115474784239 ~1997
2737501315475002639 ~1997
2737605835475211679 ~1997
2737684195475368399 ~1997
2737711915475423839 ~1997
Exponent Prime Factor Digits Year
2737749835475499679 ~1997
2737790635475581279 ~1997
2737797835475595679 ~1997
27378427945995758872112 ~2004
2737862635475725279 ~1997
273788579492819442310 ~1999
2737922035475844079 ~1997
2738019715476039439 ~1997
273807277164284366310 ~1998
273810217438096347310 ~1999
2738109235476218479 ~1997
2738142835476285679 ~1997
2738245435476490879 ~1997
2738501515477003039 ~1997
2738753515477507039 ~1997
2738864995477729999 ~1997
2738893315477786639 ~1997
2739175315478350639 ~1997
2739265315478530639 ~1997
2739285595478571199 ~1997
2739586315479172639 ~1997
273960901164376540710 ~1998
2739644515479289039 ~1997
2739667435479334879 ~1997
2739807715479615439 ~1997
Exponent Prime Factor Digits Year
2739830635479661279 ~1997
2739841435479682879 ~1997
2739854515479709039 ~1997
2739989515479979039 ~1997
2740172515480345039 ~1997
274037251438459601710 ~1999
274038001164422800710 ~1998
2740390795480781599 ~1997
2740403992027898952711 ~2001
2740409515480819039 ~1997
2740418635480837279 ~1997
2740454515480909039 ~1997
2740484035480968079 ~1997
274049593164429755910 ~1998
274049593438479348910
2740568515481137039 ~1997
2740576991973215432911 ~2001
2740719115481438239 ~1997
2740791715481583439 ~1997
2740837915481675839 ~1997
2740979035481958079 ~1997
2741121595482243199 ~1997
2741175491315764235311 ~2000
2741201035482402079 ~1997
274122281164473368710 ~1998
Home
4.739.325 digits
e-mail
25-04-20