Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2746916035493832079 ~1997
2747039635494079279 ~1997
274722979274722979110 ~1999
2747278195494556399 ~1997
2747464493022210939111 ~2001
2747907235495814479 ~1997
2747950195495900399 ~1997
2747950915495901839 ~1997
2748003715496007439 ~1997
27480277127919961533712 ~2004
2748028315496056639 ~1997
2748031435496062879 ~1997
2748104395496208799 ~1997
2748124915496249839 ~1997
2748142795496285599 ~1997
274814957219851965710 ~1998
2748215395496430799 ~1997
2748359991319212795311 ~2000
274848817659637160910 ~2000
2748494395496988799 ~1997
2748500035497000079 ~1997
2748530035497060079 ~1997
2748596395497192799 ~1997
274867337164920402310 ~1998
2748722395497444799 ~1997
Exponent Prime Factor Digits Year
2748825296157368649711 ~2002
2748830995497661999 ~1997
2748845635497691279 ~1997
274901383274901383110 ~1999
2749108031154625372711 ~2000
274915709219932567310 ~1998
2749193635498387279 ~1997
2749226035498452079 ~1997
2749243435498486879 ~1997
274924477164954686310 ~1998
2749272595498545199 ~1997
2749405915498811839 ~1997
2749457995498915999 ~1997
2749459435498918879 ~1997
2749537435499074879 ~1997
2749538395499076799 ~1997
2749555195499110399 ~1997
2749656235499312479 ~1997
2749679995499359999 ~1997
2749742635499485279 ~1997
27497599725957734116912 ~2003
2749767715499535439 ~1997
274977113384967958310 ~1999
274988641164993184710 ~1998
274989761164993856710 ~1998
Exponent Prime Factor Digits Year
274991293164994775910 ~1998
2749939315499878639 ~1997
2749961035499922079 ~1997
2749984915499969839 ~1997
275004161165002496710 ~1998
275006401165003840710 ~1998
275007613165004567910 ~1998
2750195395500390799 ~1997
2750348035500696079 ~1997
2750370715500741439 ~1997
2750381395500762799 ~1997
2750500915501001839 ~1997
275053837165032302310 ~1998
275053997220043197710 ~1998
2750583471320280065711 ~2000
275058811275058811110 ~1999
2750611795501223599 ~1997
2750620435501240879 ~1997
2750660635501321279 ~1997
2750664715501329439 ~1997
2750675635501351279 ~1997
2750796715501593439 ~1997
2750846515501693039 ~1997
275086793165052075910 ~1998
2750917315501834639 ~1997
Exponent Prime Factor Digits Year
275116757385163459910 ~1999
275124263660298231310 ~2000
2751366115502732239 ~1997
2751444595502889199 ~1997
2751445915502891839 ~1997
2751484795502969599 ~1997
2751517435503034879 ~1997
2751594595503189199 ~1997
2751617392696585042311 ~2001
2751644515503289039 ~1997
2751676435503352879 ~1997
275182847220146277710 ~1998
275190857165114514310 ~1998
2751925315503850639 ~1997
2752205515504411039 ~1997
275223437165134062310 ~1998
2752396195504792399 ~1997
2752431595504863199 ~1997
2752456435504912879 ~1997
275247397440395835310 ~1999
275248637165149182310 ~1998
275249413165149647910 ~1998
2752499635504999279 ~1997
2752558195505116399 ~1997
2752588435505176879 ~1997
Home
4.739.325 digits
e-mail
25-04-20