Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
250282049350394868710 ~1999
2502834715005669439 ~1997
250283597150170158310 ~1998
250299113600717871310 ~1999
2503047835006095679 ~1997
250306843250306843110 ~1998
250308937150185362310 ~1998
250310651200248520910 ~1998
2503144195006288399 ~1997
2503340995006681999 ~1997
250334407400535051310 ~1999
2503388995006777999 ~1997
2503449115006898239 ~1997
2503486435006972879 ~1997
2503508515007017039 ~1997
2503526995007053999 ~1997
250354061150212436710 ~1998
2503632595007265199 ~1997
2503655395007310799 ~1997
2503661395007322799 ~1997
250366517150219910310 ~1998
250368851200295080910 ~1998
2503703035007406079 ~1997
250376579200301263310 ~1998
250377761150226656710 ~1998
Exponent Prime Factor Digits Year
2503811995007623999 ~1997
250385713150231427910 ~1998
2503893835007787679 ~1997
250392533350549546310 ~1999
250409557150245734310 ~1998
250409741200327792910 ~1998
250411171250411171110 ~1998
2504128195008256399 ~1997
2504130115008260239 ~1997
2504187715008375439 ~1997
2504194795008389599 ~1997
250429661751288983110 ~1999
2504385115008770239 ~1997
250440947200352757710 ~1998
2504466715008933439 ~1997
2504541595009083199 ~1997
2504580235009160479 ~1997
250458107450824592710 ~1999
2504586235009172479 ~1997
250460633150276379910 ~1998
250466327651212450310 ~1999
2504703835009407679 ~1997
250470461200376368910 ~1998
2504732635009465279 ~1997
2504874531553022208711 ~2000
Exponent Prime Factor Digits Year
250490497150294298310 ~1998
2505007915010015839 ~1997
2505115315010230639 ~1997
2505269995010539999 ~1997
2505320035010640079 ~1997
2505379795010759599 ~1997
2505407995010815999 ~1997
2505455515010911039 ~1997
250555229350777320710 ~1999
250556729801781532910 ~2000
250571023250571023110 ~1998
250571593150342955910 ~1998
2505799435011598879 ~1997
2505929995011859999 ~1997
250596791451074223910 ~1999
2506084435012168879 ~1997
2506109635012219279 ~1997
2506251595012503199 ~1997
2506392235012784479 ~1997
2506400515012801039 ~1997
250640393150384235910 ~1998
2506492195012984399 ~1997
2506578115013156239 ~1997
250660271451188487910 ~1999
250670087200536069710 ~1998
Exponent Prime Factor Digits Year
2506736395013472799 ~1997
2506796515013593039 ~1997
2506900195013800399 ~1997
250702307451264152710 ~1999
2507073115014146239 ~1997
2507083795014167599 ~1997
2507090515014181039 ~1997
250709561200567648910 ~1998
250713217150427930310 ~1998
2507180035014360079 ~1997
250719641150431784710 ~1998
2507248435014496879 ~1997
2507265835014531679 ~1997
2507345031053084912711 ~2000
2507359315014718639 ~1997
2507472235014944479 ~1997
2507494915014989839 ~1997
2507509195015018399 ~1997
250753411401205457710 ~1999
2507585035015170079 ~1997
2507646235015292479 ~1997
2507672395015344799 ~1997
2507772235015544479 ~1997
2507805715015611439 ~1997
2507868835015737679 ~1997
Home
4.843.404 digits
e-mail
25-06-08