Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2520132595040265199 ~1997
252024701201619760910 ~1998
252040021151224012710 ~1998
2520409915040819839 ~1997
252046757201637405710 ~1998
2520506995041013999 ~1997
252052903403284644910 ~1999
2520553435041106879 ~1997
2520602995041205999 ~1997
252062687201650149710 ~1998
252076247201660997710 ~1998
252079843252079843110 ~1998
2520869035041738079 ~1997
2520906235041812479 ~1997
2521007635042015279 ~1997
2521021315042042639 ~1997
2521029235042058479 ~1997
2521052515042105039 ~1997
252107549756322647110 ~1999
2521178635042357279 ~1997
252120881151272528710 ~1998
2521313035042626079 ~1997
2521333795042667599 ~1997
2521336915042673839 ~1997
2521372795042745599 ~1997
Exponent Prime Factor Digits Year
252137519806840060910 ~2000
2521380835042761679 ~1997
2521390315042780639 ~1997
2521396915042793839 ~1997
2521478395042956799 ~1997
2521501315043002639 ~1997
2521546315043092639 ~1997
252155131453879235910 ~1999
2521643035043286079 ~1997
2521684435043368879 ~1997
2521713835043427679 ~1997
2521732673681729698311 ~2001
252176707252176707110 ~1998
252176893151306135910 ~1998
2521956595043913199 ~1997
2521973395043946799 ~1997
2522001715044003439 ~1997
252200393151320235910 ~1998
2522036395044072799 ~1997
2522043115044086239 ~1997
2522080915044161839 ~1997
2522113435044226879 ~1997
2522127115044254239 ~1997
252220217605328520910 ~1999
2522326795044653599 ~1997
Exponent Prime Factor Digits Year
2522390515044781039 ~1997
2522507035045014079 ~1997
252251957151351174310 ~1998
2522604835045209679 ~1997
2522669515045339039 ~1997
252266957151360174310 ~1998
252275341151365204710 ~1998
252277541151366524710 ~1998
2522858515045717039 ~1997
2522952595045905199 ~1997
2522953271665149158311 ~2000
2523015835046031679 ~1997
252305441151383264710 ~1998
2523119035046238079 ~1997
2523151315046302639 ~1997
2523205315046410639 ~1997
2523216595046433199 ~1997
2523224395046448799 ~1997
2523231115046462239 ~1997
2523244195046488399 ~1997
2523318115046636239 ~1997
252334897151400938310 ~1998
252335053605604127310 ~1999
252338759201871007310 ~1998
2523455395046910799 ~1997
Exponent Prime Factor Digits Year
2523467515046935039 ~1997
2523490435046980879 ~1997
252350597353290835910 ~1999
2523619435047238879 ~1997
252363403252363403110 ~1998
2523658311059936490311 ~2000
2523671515047343039 ~1997
2523728635047457279 ~1997
2523734035047468079 ~1997
252385867252385867110 ~1998
2523867235047734479 ~1997
2523883795047767599 ~1997
2523884635047769279 ~1997
252400331201920264910 ~1998
2524075795048151599 ~1997
252410359858195220710 ~2000
2524110115048220239 ~1997
2524147315048294639 ~1997
252418037605803288910 ~1999
2524336315048672639 ~1997
2524340515048681039 ~1997
2524395715048791439 ~1997
2524489191262244595111 ~2000
2524580995049161999 ~1997
2524582315049164639 ~1997
Home
4.843.404 digits
e-mail
25-06-08