Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2540007835080015679 ~1997
254005571203204456910 ~1998
2540225395080450799 ~1997
254026841203221472910 ~1998
2540297035080594079 ~1997
254031497152418898310 ~1998
2540360635080721279 ~1997
2540483395080966799 ~1997
2540526715081053439 ~1997
254056423254056423110 ~1998
254062321152437392710 ~1998
2540626315081252639 ~1997
2540649011168698544711 ~2000
2540695915081391839 ~1997
2540709595081419199 ~1997
254072257152443354310 ~1998
2540811235081622479 ~1997
254085437355719611910 ~1999
254085593152451355910 ~1998
2540984515081969039 ~1997
254106371203285096910 ~1998
2541080515082161039 ~1997
254113397152468038310 ~1998
254114017152468410310 ~1998
2541274315082548639 ~1997
Exponent Prime Factor Digits Year
2541467515082935039 ~1997
254158363254158363110 ~1998
2541609115083218239 ~1997
2541645835083291679 ~1997
254170781203336624910 ~1998
2541745795083491599 ~1997
254177321152506392710 ~1998
2541873595083747199 ~1997
2541886915083773839 ~1997
2541917995083835999 ~1997
2541997673050397204111 ~2001
2542023235084046479 ~1997
2542039315084078639 ~1997
2542069911220193556911 ~2000
2542100035084200079 ~1997
254222797152533678310 ~1998
2542263595084527199 ~1997
2542326235084652479 ~1997
2542342195084684399 ~1997
254234297203387437710 ~1998
254236447864403919910 ~2000
254239639254239639110 ~1998
2542590595085181199 ~1997
2542726435085452879 ~1997
2542761115085522239 ~1997
Exponent Prime Factor Digits Year
254277973610267135310 ~1999
254301191203440952910 ~1998
2543014795086029599 ~1997
2543051515086103039 ~1997
2543056315086112639 ~1997
2543064715086129439 ~1997
2543077315086154639 ~1997
2543116795086233599 ~1997
2543179915086359839 ~1997
254320471406912753710 ~1999
254336297152601778310 ~1998
254341187203472949710 ~1998
2543441515086883039 ~1997
2543449435086898879 ~1997
254345281559559618310 ~1999
2543456995086913999 ~1997
254349457152609674310 ~1998
2543499835086999679 ~1997
2543517115087034239 ~1997
254354173152612503910 ~1998
254361139254361139110 ~1998
254361319864828484710 ~2000
2543636995087273999 ~1997
254365337203492269710 ~1998
2543667715087335439 ~1997
Exponent Prime Factor Digits Year
2543708995087417999 ~1997
254371583813989065710 ~2000
2543719795087439599 ~1997
2543728795087457599 ~1997
2543759395087518799 ~1997
254382473152629483910 ~1998
2543873635087747279 ~1997
254396563407034500910 ~1999
2543965915087931839 ~1997
2543967115087934239 ~1997
2544009835088019679 ~1997
2544104515088209039 ~1997
2544160315088320639 ~1997
2544168192238868007311 ~2001
254420653152652391910 ~1998
2544223195088446399 ~1997
254427343407083748910 ~1999
2544287995088575999 ~1997
2544333235088666479 ~1997
2544380035088760079 ~1997
2544386511221305524911 ~2000
2544506395089012799 ~1997
2544506995089013999 ~1997
2544589034732935595911 ~2001
2544632395089264799 ~1997
Home
4.843.404 digits
e-mail
25-06-08