Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2757873715515747439 ~1997
2757911995515823999 ~1997
2757933595515867199 ~1997
2757946435515892879 ~1997
2758017235516034479 ~1997
275805553165483331910 ~1998
275809367220647493710 ~1998
275815481165489288710 ~1998
2758249315516498639 ~1997
2758313515516627039 ~1997
2758362595516725199 ~1997
2758390011048188203911 ~2000
2758443235516886479 ~1997
2758524115517048239 ~1997
2758534915517069839 ~1997
275869177165521506310 ~1998
275879431441407089710 ~1999
2758889995517779999 ~1997
2758936795517873599 ~1997
2758948915517897839 ~1997
275896081165537648710 ~1998
2759158795518317599 ~1997
275923237165553942310 ~1998
2759244715518489439 ~1997
275927551496669591910 ~1999
Exponent Prime Factor Digits Year
275932907220746325710 ~1998
275961043441537668910 ~1999
275962601165577560710 ~1998
2759659195519318399 ~1997
2759782915519565839 ~1997
275979217165587530310 ~1998
2759805115519610239 ~1997
2759830795519661599 ~1997
275983637165590182310 ~1998
275996117220796893710 ~1998
2760035035520070079 ~1997
2760168835520337679 ~1997
2760188635520377279 ~1997
2760329411269751528711 ~2000
2760418915520837839 ~1997
2760513715521027439 ~1997
276065927220852741710 ~1998
276069779496925602310 ~1999
2760717235521434479 ~1997
2760821995521643999 ~1997
2760869272043043259911 ~2001
2760886795521773599 ~1997
276089731276089731110 ~1999
2761006795522013599 ~1997
276104687220883749710 ~1998
Exponent Prime Factor Digits Year
2761094995522189999 ~1997
2761160515522321039 ~1997
2761205694804497900711 ~2002
2761342915522685839 ~1997
276134633165680779910 ~1998
2761454035522908079 ~1997
276145697165687418310 ~1998
276155743276155743110 ~1999
2761583035523166079 ~1997
276158593165695155910 ~1998
276159181441854689710 ~1999
276160271220928216910 ~1998
2761613395523226799 ~1997
276172079220937663310 ~1998
2761736035523472079 ~1997
276181097165708658310 ~1998
2761833115523666239 ~1997
276188357220950685710 ~1998
2761906435523812879 ~1997
276195037165717022310 ~1998
276199177165719506310 ~1998
2762117635524235279 ~1997
2762175595524351199 ~1997
2762221195524442399 ~1997
2762246995524493999 ~1997
Exponent Prime Factor Digits Year
2762373595524747199 ~1997
2762380195524760399 ~1997
2762640715525281439 ~1997
2762678395525356799 ~1997
2762757115525514239 ~1997
2762821195525642399 ~1997
2762980315525960639 ~1997
2763033115526066239 ~1997
2763083395526166799 ~1997
2763100195526200399 ~1997
2763152515526305039 ~1997
2763154195526308399 ~1997
2763187435526374879 ~1997
2763259195526518399 ~1997
2763384235526768479 ~1997
2763388195526776399 ~1997
276339599221071679310 ~1998
2763496315526992639 ~1997
2763524515527049039 ~1997
2763543595527087199 ~1997
2763724195527448399 ~1997
2763747835527495679 ~1997
2763753616577733591911 ~2002
276375947497476704710 ~1999
276378737663308968910 ~2000
Home
4.768.925 digits
e-mail
25-05-04