Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2874523315749046639 ~1997
2874556315749112639 ~1997
287458649229966919310 ~1999
2874588235749176479 ~1997
28748940743065913168712 ~2004
2874910315749820639 ~1997
2875025291150010116111 ~2000
287505641172503384710 ~1998
2875089715750179439 ~1997
2875096795750193599 ~1997
287526521172515912710 ~1998
287533601172520160710 ~1998
287540657172524394310 ~1998
2875470595750941199 ~1997
2875569111437784555111 ~2000
287560597172536358310 ~1998
2875622393508259315911 ~2001
2875627915751255839 ~1997
2875658515751317039 ~1997
2875663795751327599 ~1997
287595299230076239310 ~1999
2875960915751921839 ~1997
2875986595751973199 ~1997
2876209195752418399 ~1997
2876256595752513199 ~1997
Exponent Prime Factor Digits Year
2876275915752551839 ~1997
2876287915752575839 ~1997
2876333035752666079 ~1997
2876390635752781279 ~1997
2876470435752940879 ~1997
2876501515753003039 ~1997
2876541835753083679 ~1997
2876543515753087039 ~1997
287657047517782684710 ~1999
2876577595753155199 ~1997
2876710315753420639 ~1997
287672821172603692710 ~1998
2876746315753492639 ~1997
2876823595753647199 ~1997
287683589230146871310 ~1999
287685313172611187910 ~1998
2876948995753897999 ~1997
287701901172621140710 ~1998
287705813172623487910 ~1998
2877191635754383279 ~1997
2877232315754464639 ~1997
2877271315754542639 ~1997
287728561633002834310 ~2000
2877298315754596639 ~1997
2877320515754641039 ~1997
Exponent Prime Factor Digits Year
2877380515754761039 ~1997
2877679795755359599 ~1997
287778433172667059910 ~1998
2877957595755915199 ~1997
287797399287797399110 ~1999
2878002115756004239 ~1997
287802041863406123110 ~2000
287803787230243029710 ~1999
2878080235756160479 ~1997
2878217395756434799 ~1997
2878367395756734799 ~1997
2878374715756749439 ~1997
287839241230271392910 ~1999
287843519230274815310 ~1999
2878450915756901839 ~1997
287851241863553723110 ~2000
2878620235757240479 ~1997
2878661091554476988711 ~2001
287872499230297999310 ~1999
2878777435757554879 ~1997
287891969230313575310 ~1999
2879073115758146239 ~1997
2879102635758205279 ~1997
2879115115758230239 ~1997
2879321035758642079 ~1997
Exponent Prime Factor Digits Year
2879322595758645199 ~1997
2879323031151729212111 ~2000
287936767287936767110 ~1999
2879391115758782239 ~1997
287947769863843307110 ~2000
287952493172771495910 ~1998
2879540035759080079 ~1997
287954081172772448710 ~1998
2879562715759125439 ~1997
2879645635759291279 ~1997
287969537403157351910 ~1999
2879703235759406479 ~1997
2879768035759536079 ~1997
2879797435759594879 ~1997
2879837635759675279 ~1997
2879867635759735279 ~1997
2879868715759737439 ~1997
2880015595760031199 ~1997
288004181230403344910 ~1999
288011567230409253710 ~1999
2880122995760245999 ~1997
2880163315760326639 ~1997
2880165235760330479 ~1997
2880221395760442799 ~1997
288023221172813932710 ~1998
Home
4.739.325 digits
e-mail
25-04-20