Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
291117583291117583110 ~1999
291126467524027640710 ~1999
2911288195822576399 ~1997
2911293835822587679 ~1997
2911361995822723999 ~1997
2911487035822974079 ~1997
2911501315823002639 ~1997
2911520035823040079 ~1997
2911546915823093839 ~1997
291155237174693142310 ~1998
2911685515823371039 ~1997
2911703035823406079 ~1997
291172333174703399910 ~1998
291175517232940413710 ~1999
2911762795823525599 ~1997
291186073174711643910 ~1998
2911877035823754079 ~1997
2911942315823884639 ~1997
291218651232974920910 ~1999
291221761465954817710 ~1999
291248339232998671310 ~1999
2912497195824994399 ~1997
2912500795825001599 ~1997
291252557699006136910 ~2000
291257861174754716710 ~1998
Exponent Prime Factor Digits Year
291274859699059661710 ~2000
2912785795825571599 ~1997
2912792035825584079 ~1997
2912900635825801279 ~1997
291293251466069201710 ~1999
2913001091165200436111 ~2000
2913166915826333839 ~1997
291319013174791407910 ~1998
2913261595826523199 ~1997
2913328435826656879 ~1997
2913370315826740639 ~1997
2913388195826776399 ~1997
2913405595826811199 ~1997
2913414235826828479 ~1997
291345841174807504710 ~1998
291353897233083117710 ~1999
2913690595827381199 ~1997
291371611291371611110 ~1999
2913849115827698239 ~1997
291391741174835044710 ~1998
291393023699343255310 ~2000
291410993932515177710 ~2000
2914483795828967599 ~1997
2914497835828995679 ~1997
291451333174870799910 ~1998
Exponent Prime Factor Digits Year
291473593174884155910 ~1998
2914794235829588479 ~1997
2914821835829643679 ~1997
2914851235829702479 ~1997
2914910035829820079 ~1997
291495179524691322310 ~1999
2915001235830002479 ~1997
291506077174903646310 ~1998
2915071795830143599 ~1997
2915074795830149599 ~1997
2915092435830184879 ~1997
291521231233216984910 ~1999
2915273995830547999 ~1997
291534277174920566310 ~1998
2915421595830843199 ~1997
2915456515830913039 ~1997
291548549408167968710 ~1999
2915504635831009279 ~1997
291552143699725143310 ~2000
291557051233245640910 ~1999
2915676235831352479 ~1997
291573847699777232910 ~2000
2915757835831515679 ~1997
2915822995831645999 ~1997
2915852635831705279 ~1997
Exponent Prime Factor Digits Year
2916012595832025199 ~1997
2916112795832225599 ~1997
2916181915832363839 ~1997
2916224811108165427911 ~2000
2916310795832621599 ~1997
2916481795832963599 ~1997
291653057174991834310 ~1998
2916570595833141199 ~1997
291664501174998700710 ~1998
291677801175006680710 ~1998
2916887515833775039 ~1997
2916926995833853999 ~1997
2917007515834015039 ~1997
2917082995834165999 ~1997
2917089715834179439 ~1997
2917193395834386799 ~1997
2917419173734296537711 ~2002
2917421035834842079 ~1997
2917576435835152879 ~1997
2917585435835170879 ~1997
2917742691575581052711 ~2001
2917823035835646079 ~1997
291783077175069846310 ~1998
291789761233431808910 ~1999
291791833175075099910 ~1998
Home
4.739.325 digits
e-mail
25-04-20