Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2950292395900584799 ~1997
2950421035900842079 ~1997
295053089236042471310 ~1999
295059673177035803910 ~1998
2950685035901370079 ~1997
295069081177041448710 ~1998
295077017177046210310 ~1998
2950796395901592799 ~1997
2950884835901769679 ~1997
2950911835901823679 ~1997
295096097177057658310 ~1998
2950973995901947999 ~1997
2951094115902188239 ~1997
2951135035902270079 ~1997
2951266799975281750311 ~2003
295134373177080623910 ~1998
295145237236116189710 ~1999
295155893177093535910 ~1998
2951582635903165279 ~1997
2951616835903233679 ~1997
2951634835903269679 ~1997
2951699395903398799 ~1997
2951817595903635199 ~1997
295182359236145887310 ~1999
295185547295185547110 ~1999
Exponent Prime Factor Digits Year
2952254995904509999 ~1997
2952276835904553679 ~1997
295232261177139356710 ~1998
2952346195904692399 ~1997
2952369715904739439 ~1997
29523875331885785324112 ~2004
295246841236197472910 ~1999
2952486715904973439 ~1997
295257401177154440710 ~1998
295260613472416980910 ~1999
295261721177157032710 ~1998
2952627115905254239 ~1997
295264423295264423110 ~1999
2952700915905401839 ~1997
2952743635905487279 ~1997
295276673177166003910 ~1998
2952819115905638239 ~1997
2952983035905966079 ~1997
2953022395906044799 ~1997
2953169995906339999 ~1997
295322119708773085710 ~2000
2953242835906485679 ~1997
2953259035906518079 ~1997
2953348435906696879 ~1997
2953392595906785199 ~1997
Exponent Prime Factor Digits Year
2953596115907192239 ~1997
2953648631181459452111 ~2000
2953993435907986879 ~1997
2953996915907993839 ~1997
2953999915907999839 ~1997
295411033472657652910 ~1999
2954164195908328399 ~1997
2954220595908441199 ~1997
2954256595908513199 ~1997
2954280115908560239 ~1997
2954358235908716479 ~1997
2954427835908855679 ~1997
2954454835908909679 ~1997
295453201649997042310 ~2000
2954811715909623439 ~1997
2954954635909909279 ~1997
2954990635909981279 ~1997
295514053472822484910 ~1999
2955175315910350639 ~1997
2955239995910479999 ~1997
295535249413749348710 ~1999
2955371995910743999 ~1997
2955408595910817199 ~1997
295561157177336694310 ~1998
2955651835911303679 ~1997
Exponent Prime Factor Digits Year
295570981177342588710 ~1998
2955729712364583768111 ~2001
2955739915911479839 ~1997
295583503472933604910 ~1999
2955952915911905839 ~1997
2956147435912294879 ~1997
2956195435912390879 ~1997
2956235395912470799 ~1997
2956384195912768399 ~1997
2956387195912774399 ~1997
2956510915913021839 ~1997
2956559395913118799 ~1997
295660201177396120710 ~1998
2956633315913266639 ~1997
2956647835913295679 ~1997
295666711295666711110 ~1999
295671631295671631110 ~1999
2956897915913795839 ~1997
2956908595913817199 ~1997
2956954435913908879 ~1997
2957048035914096079 ~1997
295707611236566088910 ~1999
2957136115914272239 ~1997
2957181835914363679 ~1997
2957186515914373039 ~1997
Home
4.739.325 digits
e-mail
25-04-20