Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
308437733185062639910 ~1998
3084394796168789599 ~1997
308446301246757040910 ~1999
308451841493522945710 ~1999
3084688436169376879 ~1997
308474839555254710310 ~2000
3084751436169502879 ~1997
3084766316169532639 ~1997
3084794396169588799 ~1997
3084829316169658639 ~1997
3084860271727521751311 ~2001
3084912596169825199 ~1997
3084969596169939199 ~1997
308500601246800480910 ~1999
308505293185103175910 ~1998
3085141311480867828911 ~2001
308518517185111110310 ~1998
3085215116170430239 ~1997
3085267196170534399 ~1997
3085269471542634735111 ~2001
3085369196170738399 ~1997
308552221185131332710 ~1998
3085710236171420479 ~1997
3085825316171650639 ~1997
308590937185154562310 ~1998
Exponent Prime Factor Digits Year
308607401185164440710 ~1998
3086103116172206239 ~1997
3086201996172403999 ~1997
3086614916173229839 ~1997
3086727836173455679 ~1997
308674721246939776910 ~1999
308679577740830984910 ~2000
3086803316173606639 ~1997
3086821316173642639 ~1997
3086859596173719199 ~1997
3086893196173786399 ~1997
3087212516174425039 ~1997
3087338396174676799 ~1997
3087394436174788879 ~1997
308739593432235430310 ~1999
308741387246993109710 ~1999
3087468116174936239 ~1997
308754613185252767910 ~1998
308754709679260359910 ~2000
308787839247030271310 ~1999
3087928316175856639 ~1997
308802653185281591910 ~1998
3088064516176129039 ~1997
3088094636176189279 ~1997
3088253396176506799 ~1997
Exponent Prime Factor Digits Year
3088257716176515439 ~1997
3088318196176636399 ~1997
3088350716176701439 ~1997
3088542116177084239 ~1997
3088620236177240479 ~1997
3088623116177246239 ~1997
3088699196177398399 ~1997
3088703516177407039 ~1997
3088732196177464399 ~1997
3088758236177516479 ~1997
3088824716177649439 ~1997
3088864196177728399 ~1997
3088919036177838079 ~1997
3088919595004049735911 ~2002
3088956836177913679 ~1997
308899291308899291110 ~1999
3089253596178507199 ~1997
3089368196178736399 ~1997
3089456036178912079 ~1997
3089462996178925999 ~1997
3089472116178944239 ~1997
3089550716179101439 ~1997
3089616192533485275911 ~2001
3089800436179600879 ~1997
308980157185388094310 ~1998
Exponent Prime Factor Digits Year
3089854316179708639 ~1997
309000961185400576710 ~1998
3090223316180446639 ~1997
3090241196180482399 ~1997
3090349316180698639 ~1997
3090354596180709199 ~1997
3090418196180836399 ~1997
3090418796180837599 ~1997
3090498836180997679 ~1997
3090508316181016639 ~1997
3090520916181041839 ~1997
309057013185434207910 ~1998
3090602996181205999 ~1997
3090729836181459679 ~1997
3090789236181578479 ~1997
3090842036181684079 ~1997
3090850796181701599 ~1997
3090864836181729679 ~1997
3090867596181735199 ~1997
3090977516181955039 ~1997
3091262996182525999 ~1997
309128759247303007310 ~1999
3091325636182651279 ~1997
3091380596182761199 ~1997
3091403996182807999 ~1997
Home
4.739.325 digits
e-mail
25-04-20