Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3132289316264578639 ~1997
3132371171503538161711 ~2001
3132411716264823439 ~1997
3132450116264900239 ~1997
3132478731002393193711 ~2000
3133134116266268239 ~1997
3133197116266394239 ~1997
3133255316266510639 ~1997
313340021250672016910 ~1999
313340057250672045710 ~1999
3133433516266867039 ~1997
3133434236266868479 ~1997
3133642316267284639 ~1997
313364531250691624910 ~1999
3133689596267379199 ~1997
3133732436267464879 ~1997
313388351250710680910 ~1999
313389029438744640710 ~1999
3133953596267907199 ~1997
3134160236268320479 ~1997
3134182796268365599 ~1997
313440377188064226310 ~1999
3134505236269010479 ~1997
3134527196269054399 ~1997
313458757188075254310 ~1999
Exponent Prime Factor Digits Year
3134628231567314115111 ~2001
3134649716269299439 ~1997
313476211501561937710 ~2000
313477117501563387310 ~2000
3134776916269553839 ~1997
3134808596269617199 ~1997
3134926436269852879 ~1997
3134936996269873999 ~1997
313507169250805735310 ~1999
313510193188106115910 ~1999
3135102836270205679 ~1997
3135115316270230639 ~1997
3135255596270511199 ~1997
3135268316270536639 ~1997
3135332996270665999 ~1997
3135433196270866399 ~1997
313543507313543507110 ~1999
3135606716271213439 ~1997
3135622796271245599 ~1997
313578401188147040710 ~1999
3135896036271792079 ~1997
313591099313591099110 ~1999
313622971313622971110 ~1999
3136288796272577599 ~1997
3136350116272700239 ~1997
Exponent Prime Factor Digits Year
3136423316272846639 ~1997
313642397250913917710 ~1999
3136589036273178079 ~1997
3136696196273392399 ~1997
3136832396273664799 ~1997
313684771313684771110 ~1999
3136862516273725039 ~1997
3136925636273851279 ~1997
313697981250958384910 ~1999
3137020436274040879 ~1997
3137067596274135199 ~1997
3137070195583984938311 ~2002
3137373236274746479 ~1997
313750117188250070310 ~1999
3137532596275065199 ~1997
3137536796275073599 ~1997
3137641796275283599 ~1997
3137725796275451599 ~1997
313778119313778119110 ~1999
3137805836275611679 ~1997
3137811836275623679 ~1997
3137873396275746799 ~1997
313791637188274982310 ~1999
3138015836276031679 ~1997
3138124196276248399 ~1997
Exponent Prime Factor Digits Year
313814227502102763310 ~2000
313823987815942366310 ~2000
3138245036276490079 ~1997
3138460796276921599 ~1997
313849381188309628710 ~1999
313853261251082608910 ~1999
3138539996277079999 ~1997
313862167313862167110 ~1999
3138682316277364639 ~1997
3138703916277407839 ~1997
3138707516277415039 ~1997
313874089690522995910 ~2000
3138745916277491839 ~1997
3138850316277700639 ~1997
3138978236277956479 ~1997
313905853188343511910 ~1999
3139085996278171999 ~1997
313913233188347939910 ~1999
3139133396278266799 ~1997
313928521502285633710 ~2000
313960957188376574310 ~1999
3139648796279297599 ~1997
3139928516279857039 ~1997
3140024996280049999 ~1997
3140067836280135679 ~1997
Home
4.739.325 digits
e-mail
25-04-20