Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
285913679514644622310 ~1999
2859152515718305039 ~1997
2859173995718347999 ~1997
285923987514663176710 ~1999
2859245995718491999 ~1997
2859422035718844079 ~1997
285945689228756551310 ~1999
2859497995718995999 ~1997
2859606175662020216711 ~2002
285982561171589536710 ~1998
285983351228786680910 ~1999
285983683972344522310 ~2000
2859844315719688639 ~1997
2859847195719694399 ~1997
285988777171593266310 ~1998
2859899995719799999 ~1997
2859963235719926479 ~1997
285997147514794864710 ~1999
2859974035719948079 ~1997
2859982915719965839 ~1997
2859998395719996799 ~1997
286011029228808823310 ~1999
2860129315720258639 ~1997
2860160395720320799 ~1997
286018043915257737710 ~2000
Exponent Prime Factor Digits Year
286028609400440052710 ~1999
2860421035720842079 ~1997
2860452715720905439 ~1997
2860644595721289199 ~1997
2860783195721566399 ~1997
286081261171648756710 ~1998
2860832995721665999 ~1997
286091261228873008910 ~1999
2861044915722089839 ~1997
2861171515722343039 ~1997
2861185315722370639 ~1997
286119749400567648710 ~1999
286120463743913203910 ~2000
2861282635722565279 ~1997
2861396635722793279 ~1997
2861413915722827839 ~1997
286151867228921493710 ~1999
286161661171696996710 ~1998
2861808835723617679 ~1997
2861898595723797199 ~1997
286191133171714679910 ~1998
2861997595723995199 ~1997
286200947228960757710 ~1999
2862089635724179279 ~1997
2862109795724219599 ~1997
Exponent Prime Factor Digits Year
286211921171727152710 ~1998
2862126115724252239 ~1997
2862169435724338879 ~1997
2862449515724899039 ~1997
2862498115724996239 ~1997
2862516835725033679 ~1997
2862542291145016916111 ~2000
286270981171762588710 ~1998
2862772795725545599 ~1997
286281337171768802310 ~1998
286297393171778435910 ~1998
2862976915725953839 ~1997
2863122595726245199 ~1997
286316923973477538310 ~2000
286321969687172725710 ~2000
2863293192576963871111 ~2001
2863379395726758799 ~1997
286344931286344931110 ~1999
2863592995727185999 ~1997
2863622395727244799 ~1997
2863629715727259439 ~1997
2863825435727650879 ~1997
2863860115727720239 ~1997
2863942435727884879 ~1997
2863953835727907679 ~1997
Exponent Prime Factor Digits Year
2863967035727934079 ~1997
286398109687355461710 ~2000
286399397229119517710 ~1999
286413013171847807910 ~1998
2864151835728303679 ~1997
2864161915728323839 ~1997
286416553171849931910 ~1998
2864310595728621199 ~1997
286432567286432567110 ~1999
286436617171861970310 ~1998
2864402395728804799 ~1997
286441577171864946310 ~1998
2864456233036323603911 ~2001
2864462035728924079 ~1997
2864582515729165039 ~1997
286462333171877399910 ~1998
286464677171878806310 ~1998
2864769595729539199 ~1997
2864797795729595599 ~1997
2864848435729696879 ~1997
2865195595730391199 ~1997
286523203286523203110 ~1999
286523431286523431110 ~1999
2865240835730481679 ~1997
2865300115730600239 ~1997
Home
4.843.404 digits
e-mail
25-06-08