Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3268509116537018239 ~1997
326851939326851939110 ~1999
3268530716537061439 ~1997
3268572596537145199 ~1997
3268587236537174479 ~1997
3268658396537316799 ~1997
3268685516537371039 ~1997
326881483523010372910 ~2000
3268890116537780239 ~1997
326907877196144726310 ~1999
3269080316538160639 ~1997
3269129516538259039 ~1997
326917057523067291310 ~2000
3269212916538425839 ~1997
326932721196159632710 ~1999
3269497436538994879 ~1997
3269559836539119679 ~1997
326956433196173859910 ~1999
3269564396539128799 ~1997
3269573036539146079 ~1997
326960141196176084710 ~1999
326960351261568280910 ~1999
3269782436539564879 ~1997
3269812436539624879 ~1997
3269830211307932084111 ~2001
Exponent Prime Factor Digits Year
326999297261599437710 ~1999
3270071516540143039 ~1997
327017351261613880910 ~1999
3270217316540434639 ~1997
3270244436540488879 ~1997
3270321716540643439 ~1997
3270438236540876479 ~1997
327044287588679716710 ~2000
3270479516540959039 ~1997
327056657196233994310 ~1999
327065351588717631910 ~2000
3270752636541505279 ~1997
3270770996541541999 ~1997
3270823916541647839 ~1997
327094193196256515910 ~1999
327095077523352123310 ~2000
3271033796542067599 ~1997
3271080116542160239 ~1997
3271420316542840639 ~1997
3271492196542984399 ~1997
3271527836543055679 ~1997
3271534796543069599 ~1997
3271537796543075599 ~1997
3271605836543211679 ~1997
3271623716543247439 ~1997
Exponent Prime Factor Digits Year
3271637516543275039 ~1997
3271692116543384239 ~1997
3271699196543398399 ~1997
327176797196306078310 ~1999
327200317785280760910 ~2000
3272033996544067999 ~1997
3272154596544309199 ~1997
327215573785317375310 ~2000
3272237516544475039 ~1997
3272251796544503599 ~1997
327226181196335708710 ~1999
3272292716544585439 ~1997
3272455436544910879 ~1997
3272483036544966079 ~1997
3272501396545002799 ~1997
327274109458183752710 ~2000
3272753636545507279 ~1997
327278177261822541710 ~1999
327278771261823016910 ~1999
327281861261825488910 ~1999
3272839196545678399 ~1997
3272845392094621049711 ~2001
3272879636545759279 ~1997
327294809261835847310 ~1999
3272961116545922239 ~1997
Exponent Prime Factor Digits Year
327309431261847544910 ~1999
3273111116546222239 ~1997
327313601196388160710 ~1999
3273215516546431039 ~1997
3273298196546596399 ~1997
3273362036546724079 ~1997
3273430316546860639 ~1997
3273447236546894479 ~1997
3273465596546931199 ~1997
327348941196409364710 ~1999
327361253196416751910 ~1999
3273635396547270799 ~1997
3273692396547384799 ~1997
327378713196427227910 ~1999
327382817196429690310 ~1999
3273837836547675679 ~1997
3273890996547781999 ~1997
3273903596547807199 ~1997
3273924236547848479 ~1997
3273960716547921439 ~1997
327396271327396271110 ~1999
3273983036547966079 ~1997
3274048796548097599 ~1997
327407347523851755310 ~2000
3274137116548274239 ~1997
Home
4.739.325 digits
e-mail
25-04-20