Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3072093236144186479 ~1997
3072331916144663839 ~1997
3072368516144737039 ~1997
3072407996144815999 ~1997
3072542036145084079 ~1997
3072671396145342799 ~1997
3072825116145650239 ~1997
3072907796145815599 ~1997
3073085396146170799 ~1997
3073312436146624879 ~1997
3073404596146809199 ~1997
307342547245874037710 ~1999
3073512236147024479 ~1997
3073522931413820547911 ~2001
3073719836147439679 ~1997
3073758236147516479 ~1997
3073827116147654239 ~1997
3073908596147817199 ~1997
307391299307391299110 ~1999
307397683491836292910 ~1999
3074072396148144799 ~1997
3074192636148385279 ~1997
307427741184456644710 ~1998
3074278316148556639 ~1997
307446941184468164710 ~1998
Exponent Prime Factor Digits Year
3074493716148987439 ~1997
3074547116149094239 ~1997
307464389245971511310 ~1999
3074647916149295839 ~1997
307469777184481866310 ~1998
3074698436149396879 ~1997
3074744396149488799 ~1997
3074786636149573279 ~1997
3074850116149700239 ~1997
3075025436150050879 ~1997
3075122516150245039 ~1997
307513001184507800710 ~1998
3075206636150413279 ~1997
3075253916150507839 ~1997
307557101184534260710 ~1998
3075819716151639439 ~1997
3075873596151747199 ~1997
307603651307603651110 ~1999
3076105316152210639 ~1997
3076206716152413439 ~1997
3076352396152704799 ~1997
3076385636152771279 ~1997
3076408436152816879 ~1997
307642057184585234310 ~1998
307643857184586314310 ~1998
Exponent Prime Factor Digits Year
3076533716153067439 ~1997
3076546436153092879 ~1997
3076640396153280799 ~1997
3076748033692097636111 ~2002
307676701184606020710 ~1998
3076771796153543599 ~1997
307677919307677919110 ~1999
3076785836153571679 ~1997
3076991036153982079 ~1997
307705759307705759110 ~1999
3077153636154307279 ~1997
3077194796154389599 ~1997
307734509430828312710 ~1999
3077516516155033039 ~1997
3077582996155165999 ~1997
307761481184656888710 ~1998
3077823836155647679 ~1997
307783687307783687110 ~1999
3077864036155728079 ~1997
3077877236155754479 ~1997
3077922236155844479 ~1997
3078006596156013199 ~1997
3078020036156040079 ~1997
307803253184681951910 ~1998
3078100916156201839 ~1997
Exponent Prime Factor Digits Year
3078245636156491279 ~1997
3078272636156545279 ~1997
3078280196156560399 ~1997
3078303116156606239 ~1997
3078401636156803279 ~1997
3078445916156891839 ~1997
307855579307855579110 ~1999
307871093184722655910 ~1998
3078793436157586879 ~1997
3078877196157754399 ~1997
3078938636157877279 ~1997
3078947036157894079 ~1997
3079038596158077199 ~1997
307906219307906219110 ~1999
3079068116158136239 ~1997
3079158596158317199 ~1997
307918349246334679310 ~1999
307918553184751131910 ~1998
3079417436158834879 ~1997
3079480316158960639 ~1997
3079504034927206448111 ~2002
3079574516159149039 ~1997
3079646036159292079 ~1997
3079676516159353039 ~1997
307995217184797130310 ~1998
Home
4.843.404 digits
e-mail
25-06-08