Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
309334001247467200910 ~1999
3093378596186757199 ~1997
3093390596186781199 ~1997
309346439247477151310 ~1999
3093477716186955439 ~1997
3093553796187107599 ~1997
3093600596187201199 ~1997
309360089247488071310 ~1999
309362041185617224710 ~1998
3093708236187416479 ~1997
3093812396187624799 ~1997
309398627804436430310 ~2000
309408553742580527310 ~2000
309414473185648683910 ~1998
3094168796188337599 ~1997
309418297185650978310 ~1998
3094247996188495999 ~1997
3094255916188511839 ~1997
309425801185655480710 ~1998
309429293185657575910 ~1998
309431981247545584910 ~1999
3094320236188640479 ~1997
3094333916188667839 ~1997
3094363316188726639 ~1997
309437803309437803110 ~1999
Exponent Prime Factor Digits Year
309439331804542260710 ~2000
3094445396188890799 ~1997
3094494116188988239 ~1997
3094526516189053039 ~1997
3094622996189245999 ~1997
3094640211175963279911 ~2000
309464521928393563110 ~2000
3094674236189348479 ~1997
3094712516189425039 ~1997
3094718636189437279 ~1997
3094771316189542639 ~1997
3094878836189757679 ~1997
3094906196189812399 ~1997
309495877742790104910 ~2000
3094969316189938639 ~1997
309497381185698428710 ~1998
3095019116190038239 ~1997
3095051516190103039 ~1997
309517639309517639110 ~1999
309527333185716399910 ~1998
3095319236190638479 ~1997
309533377185720026310 ~1998
309543167247634533710 ~1999
3095513036191026079 ~1997
3095597036191194079 ~1997
Exponent Prime Factor Digits Year
309568199990618236910 ~2000
3095695316191390639 ~1997
3095919236191838479 ~1997
3095925716191851439 ~1997
3096048116192096239 ~1997
309623959309623959110 ~1999
3096241316192482639 ~1997
309637193185782315910 ~1998
3096376316192752639 ~1997
3096435716192871439 ~1997
3096438116192876239 ~1997
309653917185792350310 ~1998
309668221185800932710 ~1998
3096724796193449599 ~1997
3096771116193542239 ~1997
309685361185811216710 ~1998
3096872396193744799 ~1997
309692237433569131910 ~1999
3096966596193933199 ~1997
309701599309701599110 ~1999
3097017836194035679 ~1997
3097085516194171039 ~1997
3097134836194269679 ~1997
3097158836194317679 ~1997
3097164836194329679 ~1997
Exponent Prime Factor Digits Year
3097176236194352479 ~1997
3097176716194353439 ~1997
3097277396194554799 ~1997
3097329716194659439 ~1997
3097340636194681279 ~1997
3097389836194779679 ~1997
3097441916194883839 ~1997
3097489796194979599 ~1997
3097614236195228479 ~1997
309771017185862610310 ~1998
3097748636195497279 ~1997
3097793396195586799 ~1997
3097800116195600239 ~1997
309802177185881306310 ~1998
3098066036196132079 ~1997
3098281436196562879 ~1997
309833521185900112710 ~1998
3098346596196693199 ~1997
309841669929525007110 ~2000
3098433236196866479 ~1997
309843973185906383910 ~1998
309844357743626456910 ~2000
309855883309855883110 ~1999
309870479247896383310 ~1999
3098726396197452799 ~1997
Home
4.843.404 digits
e-mail
25-06-08