Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3641355597282711199 ~1998
3641402397282804799 ~1998
3641433597282867199 ~1998
3641513517283027039 ~1998
3641597397283194799 ~1998
364166167364166167110 ~2000
364171987364171987110 ~2000
3641876997283753999 ~1998
3642289797284579599 ~1998
364237243364237243110 ~2000
3642436797284873599 ~1998
364263973218558383910 ~1999
364266101218559660710 ~1999
3642708717285417439 ~1998
3642730437285460879 ~1998
364275013218565007910 ~1999
3642783117285566239 ~1998
3643056117286112239 ~1998
3643058397286116799 ~1998
3643091997286183999 ~1998
3643193397286386799 ~1998
3643298517286597039 ~1998
3643301997286603999 ~1998
364337669291470135310 ~1999
3643474197286948399 ~1998
Exponent Prime Factor Digits Year
364356253218613751910 ~1999
3643760637287521279 ~1998
364378103947383067910 ~2001
364379051291503240910 ~1999
3644107797288215599 ~1998
3644135517288271039 ~1998
364416841218650104710 ~1999
364422371291537896910 ~1999
3644320917288641839 ~1998
364441787655995216710 ~2000
3644517237289034479 ~1998
3644544597289089199 ~1998
3644600397289200799 ~1998
3644682117289364239 ~1998
3644708397289416799 ~1998
3644796237289592479 ~1998
3644888517289777039 ~1998
3644941317289882639 ~1998
364497193218698315910 ~1999
3644981037289962079 ~1998
364498117218698870310 ~1999
3645025437290050879 ~1998
3645215517290431039 ~1998
364531873218719123910 ~1999
3645458997290917999 ~1998
Exponent Prime Factor Digits Year
3645511917291023839 ~1998
3645553437291106879 ~1998
3645582237291164479 ~1998
3645665637291331279 ~1998
3645667917291335839 ~1998
364568861218741316710 ~1999
3645897597291795199 ~1998
3646099917292199839 ~1998
364616639291693311310 ~1999
3646416891093925067111 ~2001
364644473218786683910 ~1999
3646595517293191039 ~1998
364674677218804806310 ~1999
3646824771750475889711 ~2001
364685059875244141710 ~2001
364739861291791888910 ~1999
3647544597295089199 ~1998
364763369291810695310 ~1999
3647830437295660879 ~1998
3647912397295824799 ~1998
36479721743775666040112 ~2005
3648131037296262079 ~1998
364818473218891083910 ~1999
3648195237296390479 ~1998
364822957218893774310 ~1999
Exponent Prime Factor Digits Year
3648343917296687839 ~1998
3648586197297172399 ~1998
3648603717297207439 ~1998
3648759117297518239 ~1998
3648857997297715999 ~1998
364902539291922031310 ~1999
3649062597298125199 ~1998
3649115517298231039 ~1998
3649163997298327999 ~1998
3649263717298527439 ~1998
364940131656892235910 ~2000
3649435917298871839 ~1998
3649454997298909999 ~1998
364952173218971303910 ~1999
3649548717299097439 ~1998
3649677237299354479 ~1998
3649702197299404399 ~1998
3649708917299417839 ~1998
3649724517299449039 ~1998
3649764717299529439 ~1998
3649798437299596879 ~1998
3649800237299600479 ~1998
3649835517299671039 ~1998
364991533218994919910 ~1999
364991983364991983110 ~2000
Home
4.739.325 digits
e-mail
25-04-20