Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3248918636497837279 ~1997
324904817194942890310 ~1999
3249098636498197279 ~1997
324912593194947555910 ~1999
3249133316498266639 ~1997
3249283796498567599 ~1997
324933061194959836710 ~1999
324945001714879002310 ~2000
3249450596498901199 ~1997
3249506571559763153711 ~2001
3249556196499112399 ~1997
3249614636499229279 ~1997
3249684716499369439 ~1997
324972737259978189710 ~1999
3249952436499904879 ~1997
3249972596499945199 ~1997
3250054196500108399 ~1997
325018219325018219110 ~1999
3250192316500384639 ~1997
3250239836500479679 ~1997
3250307636500615279 ~1997
3250310996500621999 ~1997
3250350836500701679 ~1997
325039409260031527310 ~1999
3250515116501030239 ~1997
Exponent Prime Factor Digits Year
325057861195034716710 ~1999
3250579796501159599 ~1997
3250596596501193199 ~1997
325061357260049085710 ~1999
325066957195040174310 ~1999
325068187325068187110 ~1999
325073503520117604910 ~2000
325078651585141571910 ~2000
325086449260069159310 ~1999
3250878596501757199 ~1997
3250881116501762239 ~1997
3251005916502011839 ~1997
3251008196502016399 ~1997
325102187260081749710 ~1999
3251143436502286879 ~1997
3251199116502398239 ~1997
3251227196502454399 ~1997
3251247596502495199 ~1997
3251259596502519199 ~1997
325126427260101141710 ~1999
325145719780349725710 ~2000
3251562836503125679 ~1997
3251765636503531279 ~1997
325182041975546123110 ~2000
3251874596503749199 ~1997
Exponent Prime Factor Digits Year
3251875196503750399 ~1997
3251902196503804399 ~1997
3251926916503853839 ~1997
3251962796503925599 ~1997
3252040796504081599 ~1997
325237357195142414310 ~1999
325244519260195615310 ~1999
3252530636505061279 ~1997
325255901195153540710 ~1999
325264013455369618310 ~2000
3252644036505288079 ~1997
3252752996505505999 ~1997
325278893195167335910 ~1999
325304767325304767110 ~1999
3253120796506241599 ~1997
3253142396506284799 ~1997
3253151636506303279 ~1997
3253201796506403599 ~1997
3253228916506457839 ~1997
325332013195199207910 ~1999
3253328516506657039 ~1997
3253386596506773199 ~1997
3253388996506777999 ~1997
325349819260279855310 ~1999
3253578596507157199 ~1997
Exponent Prime Factor Digits Year
3253648436507296879 ~1997
3253676873709191631911 ~2002
3253798196507596399 ~1997
325381117195228670310 ~1999
3253820036507640079 ~1997
325382347325382347110 ~1999
3253988516507977039 ~1997
325409041195245424710 ~1999
3254130596508261199 ~1997
3254144339632267216911 ~2003
3254164916508329839 ~1997
325422973520676756910 ~2000
3254463716508927439 ~1997
3254501996509003999 ~1997
325461337195276802310 ~1999
3254629196509258399 ~1997
3254644796509289599 ~1997
3254689916509379839 ~1997
3254739836509479679 ~1997
3254929436509858879 ~1997
3255038636510077279 ~1997
3255060171236922864711 ~2001
3255270116510540239 ~1997
3255342716510685439 ~1997
3255376436510752879 ~1997
Home
4.933.056 digits
e-mail
25-07-20