Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
401870879321496703310 ~2000
401871989321497591310 ~2000
4018736638037473279 ~1998
4018739038037478079 ~1998
4018764598037529199 ~1998
401880121241128072710 ~1999
401889317321511453710 ~2000
4019105638038211279 ~1998
4019108518038217039 ~1998
401924441321539552910 ~2000
401939693964655263310 ~2001
4019515318039030639 ~1998
4019536918039073839 ~1998
401956847964696432910 ~2001
4019655238039310479 ~1998
4019796898923949095911 ~2003
4019949598039899199 ~1998
4020072238040144479 ~1998
4020301438040602879 ~1998
4020511198041022399 ~1998
402053761643286017710 ~2000
4020754198041508399 ~1998
4020865198041730399 ~1998
4020872398041744799 ~1998
402101879321681503310 ~2000
Exponent Prime Factor Digits Year
402103271321682616910 ~2000
4021092718042185439 ~1998
4021162198042324399 ~1998
4021208638042417279 ~1998
4021253518042507039 ~1998
402136157241281694310 ~1999
402138641241283184710 ~1999
4021470598042941199 ~1998
4021559518043119039 ~1998
402163549884759807910 ~2001
4021734838043469679 ~1998
4022086438044172879 ~1998
402210937241326562310 ~1999
4022368198044736399 ~1998
4022409118044818239 ~1998
402242447321793957710 ~2000
4022464198044928399 ~1998
4022497918044995839 ~1998
402253301241351980710 ~1999
4022533438045066879 ~1998
4022651638045303279 ~1998
4022681038045362079 ~1998
402276377241365826310 ~1999
4022836438045672879 ~1998
4022907838045815679 ~1998
Exponent Prime Factor Digits Year
402291727402291727110 ~2000
402299411321839528910 ~2000
4023010198046020399 ~1998
402301187321840949710 ~2000
4023159718046319439 ~1998
4023217438046434879 ~1998
4023319918046639839 ~1998
4023335398046670799 ~1998
402364673241418803910 ~1999
402391303402391303110 ~2000
4024000798048001599 ~1998
402406601321925280910 ~2000
4024087918048175839 ~1998
4024150438048300879 ~1998
4024200718048401439 ~1998
4024228438048456879 ~1998
402435889885358955910 ~2001
402438833241463299910 ~1999
4024404118048808239 ~1998
4024497598048995199 ~1998
4024603932173286122311 ~2002
4024609318049218639 ~1998
4024884598049769199 ~1998
4024908838049817679 ~1998
402501677241501006310 ~1999
Exponent Prime Factor Digits Year
4025027038050054079 ~1998
4025145238050290479 ~1998
402520561241512336710 ~1999
4025226238050452479 ~1998
402533381322026704910 ~2000
402534697241520818310 ~1999
4025660638051321279 ~1998
4025709118051418239 ~1998
402597367402597367110 ~2000
4025993998051987999 ~1998
4026009118052018239 ~1998
402605261322084208910 ~2000
402606157241563694310 ~1999
402613753241568251910 ~1999
4026203638052407279 ~1998
4026204838052409679 ~1998
4026232312013116155111 ~2002
402626899402626899110 ~2000
4026502918053005839 ~1998
4026578091530099674311 ~2001
4026812398053624799 ~1998
4026865198053730399 ~1998
4026888171208066451111 ~2001
4026894496765182743311 ~2003
4026979438053958879 ~1998
Home
4.739.325 digits
e-mail
25-04-20