Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4194273118388546239 ~1998
4194324118388648239 ~1998
419434229587207920710 ~2000
419444141335555312910 ~2000
419445253251667151910 ~1999
4194461038388922079 ~1998
4194657238389314479 ~1998
419470061251682036710 ~1999
4194864238389728479 ~1998
419500093251700055910 ~1999
4195016991761907135911 ~2002
4195035838390071679 ~1998
4195082638390165279 ~1998
4195185598390371199 ~1998
419518997251711398310 ~1999
419548013251728807910 ~1999
4195505038391010079 ~1998
419563093671300948910 ~2001
419584793587418710310 ~2000
4195920072014041633711 ~2002
419598329335678663310 ~2000
4195983598391967199 ~1998
4196375398392750799 ~1998
4196379838392759679 ~1998
4196410918392821839 ~1998
Exponent Prime Factor Digits Year
4196420398392840799 ~1998
4196753398393506799 ~1998
4196848798393697599 ~1998
4196926318393852639 ~1998
419692997335754397710 ~2000
4196962198393924399 ~1998
4197259918394519839 ~1998
4197469731343190313711 ~2001
4197517798395035599 ~1998
419754869335803895310 ~2000
4197595318395190639 ~1998
4197618718395237439 ~1998
4197632998395265999 ~1998
4197662998395325999 ~1998
419767561251860536710 ~1999
419769277251861566310 ~1999
419769341251861604710 ~1999
4197701998395403999 ~1998
419786197251871718310 ~1999
4198047118396094239 ~1998
4198166518396333039 ~1998
4198381631427449754311 ~2001
419840341251904204710 ~2000
4198836838397673679 ~1998
4198864198397728399 ~1998
Exponent Prime Factor Digits Year
4199063398398126799 ~1998
4199318398398636799 ~1998
4199353198398706399 ~1998
4199361238398722479 ~1998
419937697251962618310 ~2000
419948647671917835310 ~2001
4199834638399669279 ~1998
4200003238400006479 ~1998
4200110998400221999 ~1998
4200399238400798479 ~1998
4200507838401015679 ~1998
4200544438401088879 ~1998
4200550198401100399 ~1998
4200672118401344239 ~1998
4200766198401532399 ~1998
420086021252051612710 ~2000
4200975118401950239 ~1998
4201004038402008079 ~1998
4201168918402337839 ~1998
420136007336108805710 ~2000
420138821336111056910 ~2000
4201448998402897999 ~1998
4201561371260468411111 ~2001
4201736518403473039 ~1998
4201763038403526079 ~1998
Exponent Prime Factor Digits Year
420181093252108655910 ~2000
420185069336148055310 ~2000
4201863598403727199 ~1998
420193517252116110310 ~2000
4202044438404088879 ~1998
420205817336164653710 ~2000
4202121838404243679 ~1998
4202186638404373279 ~1998
4202226118404452239 ~1998
4202255518404511039 ~1998
4202413318404826639 ~1998
420245977252147586310 ~2000
420257687336206149710 ~2000
420258857336207085710 ~2000
420269231336215384910 ~2000
4202708398405416799 ~1998
4202714998405429999 ~1998
4202797318405594639 ~1998
4202838598405677199 ~1998
4202920918405841839 ~1998
420297037252178222310 ~2000
4202987771008717064911 ~2001
4203290518406581039 ~1998
4203290998406581999 ~1998
420331193252198715910 ~2000
Home
4.724.182 digits
e-mail
25-04-13