Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4214301838428603679 ~1998
4214358238428716479 ~1998
421440157252864094310 ~2000
4214440918428881839 ~1998
421446197252867718310 ~2000
421447667337158133710 ~2000
4214485918428971839 ~1998
421450853252870511910 ~2000
4214624518429249039 ~1998
421476113252885667910 ~2000
421478891337183112910 ~2000
4214817718429635439 ~1998
4214833731011560095311 ~2001
4214859238429718479 ~1998
4214974671095893414311 ~2001
4215002518430005039 ~1998
4215008518430017039 ~1998
4215051598430103199 ~1998
4215136198430272399 ~1998
4215178798430357599 ~1998
4215239518430479039 ~1998
4215243718430487439 ~1998
4215311811348899779311 ~2001
4215338638430677279 ~1998
4215514918431029839 ~1998
Exponent Prime Factor Digits Year
4215662518431325039 ~1998
421567297252940378310 ~2000
421584799421584799110 ~2000
4215852791686341116111 ~2002
4216013295059215948111 ~2003
4216084318432168639 ~1998
4216135798432271599 ~1998
4216166395059399668111 ~2003
4216267037757931335311 ~2003
421650161337320128910 ~2000
4216505038433010079 ~1998
421667327759001188710 ~2001
421676441253005864710 ~2000
421677541253006524710 ~2000
4216862638433725279 ~1998
4217060398434120799 ~1998
4217105398434210799 ~1998
4217123038434246079 ~1998
421715081253029048710 ~2000
4217157718434315439 ~1998
421736857253042114310 ~2000
4217397118434794239 ~1998
4217576038435152079 ~1998
4217601598435203199 ~1998
421763491759174283910 ~2001
Exponent Prime Factor Digits Year
4217642411687056964111 ~2002
4217725318435450639 ~1998
4217836438435672879 ~1998
421798561927956834310 ~2001
4218001438436002879 ~1998
4218003718436007439 ~1998
421802561253081536710 ~2000
421815089337452071310 ~2000
4218402838436805679 ~1998
4218444598436889199 ~1998
421848397674957435310 ~2001
421863151759353671910 ~2001
4218730318437460639 ~1998
4218864118437728239 ~1998
4218993238437986479 ~1998
421942711421942711110 ~2000
4219695191012726845711 ~2001
4219711318439422639 ~1998
4219872598439745199 ~1998
4219900918439801839 ~1998
4219915438439830879 ~1998
421996021253197612710 ~2000
4220016238440032479 ~1998
4220220118440440239 ~1998
4220252518440505039 ~1998
Exponent Prime Factor Digits Year
422044741253226844710 ~2000
422053133253231879910 ~2000
4220614438441228879 ~1998
422077433590908406310 ~2000
422086631337669304910 ~2000
4220904238441808479 ~1998
4221055318442110639 ~1998
4221065518442131039 ~1998
4221071398442142799 ~1998
4221190318442380639 ~1998
422140373590996522310 ~2000
4221540598443081199 ~1998
4221606118865372831111 ~2003
4221613198443226399 ~1998
4221698518443397039 ~1998
4221731518443463039 ~1998
422177669591048736710 ~2000
422189531337751624910 ~2000
422216023422216023110 ~2000
422228077253336846310 ~2000
4222483318444966639 ~1998
4222511038445022079 ~1998
4222532038445064079 ~1998
422269277337815421710 ~2000
4222757398445514799 ~1998
Home
4.724.182 digits
e-mail
25-04-13