Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3751252917502505839 ~1998
3751360437502720879 ~1998
375151207675272172710 ~2000
3751603197503206399 ~1998
3751752117503504239 ~1998
3752157837504315679 ~1998
3752272437504544879 ~1998
375232661225139596710 ~1999
3752425197504850399 ~1998
3752540517505081039 ~1998
3752577837505155679 ~1998
375266233225159739910 ~1999
3752834517505669039 ~1998
3752848797505697599 ~1998
3752916717505833439 ~1998
3753013797506027599 ~1998
375304361225182616710 ~1999
375320177300256141710 ~1999
375321313225192787910 ~1999
3753229437506458879 ~1998
375325861825716894310 ~2001
3753316797506633599 ~1998
375345419300276335310 ~1999
375353281225211968710 ~1999
3753613317507226639 ~1998
Exponent Prime Factor Digits Year
3753723237507446479 ~1998
3753752397507504799 ~1998
375375401225225240710 ~1999
375375967375375967110 ~2000
375382037300305629710 ~1999
3753873717507747439 ~1998
3753890397507780799 ~1998
3754005597508011199 ~1998
3754034037508068079 ~1998
3754107237508214479 ~1998
3754170237508340479 ~1998
3754188597508377199 ~1998
3754237917508475839 ~1998
375429017901029640910 ~2001
3754369917508739839 ~1998
375437599375437599110 ~2000
3754410237508820479 ~1998
375445753225267451910 ~1999
375450539300360431310 ~1999
375458047375458047110 ~2000
3754615437509230879 ~1998
3754748997509497999 ~1998
3754762917509525839 ~1998
3754911837509823679 ~1998
375497657300398125710 ~1999
Exponent Prime Factor Digits Year
375501361600802177710 ~2000
3755107317510214639 ~1998
3755155317510310639 ~1998
375518357225311014310 ~1999
3755184837510369679 ~1998
3755191917510383839 ~1998
375519701225311820710 ~1999
3755556237511112479 ~1998
3755938317511876639 ~1998
3755970112103343261711 ~2002
3756135717512271439 ~1998
375616541225369924710 ~1999
375624103375624103110 ~2000
375629549901510917710 ~2001
3756377391202040764911 ~2001
3756501237513002479 ~1998
375651313225390787910 ~1999
3756517917513035839 ~1998
3756647997513295999 ~1998
3756739437513478879 ~1998
3756934437513868879 ~1998
3756951671502780668111 ~2001
3756980517513961039 ~1998
375713777300571021710 ~1999
37572002914953657154312 ~2004
Exponent Prime Factor Digits Year
3757220517514441039 ~1998
3757235637514471279 ~1998
3757247037514494079 ~1998
3757320237514640479 ~1998
3757481897815562331311 ~2003
3757510917515021839 ~1998
3757541997515083999 ~1998
375763181300610544910 ~1999
3757658997515317999 ~1998
375777011300621608910 ~1999
375798043375798043110 ~2000
375805217225483130310 ~1999
3758086797516173599 ~1998
3758137197516274399 ~1998
375826853225496111910 ~1999
3758275917516551839 ~1998
3758326797516653599 ~1998
3758334837516669679 ~1998
3758507637517015279 ~1998
375856771375856771110 ~2000
375860533225516319910 ~1999
375867641225520584710 ~1999
3758875917517751839 ~1998
3758934117517868239 ~1998
3758993517517987039 ~1998
Home
4.843.404 digits
e-mail
25-06-08