Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4135258318270516639 ~1998
413529629330823703310 ~2000
4135318198270636399 ~1998
4135376471406027999911 ~2001
41354502112819895651112 ~2004
413574179330859343310 ~2000
4135953598271907199 ~1998
413618341248171004710 ~1999
4136256131240876839111 ~2001
4136258518272517039 ~1998
4136471038272942079 ~1998
4136550838273101679 ~1998
413670167330936133710 ~2000
4136827798273655599 ~1998
4136869198273738399 ~1998
4136879518273759039 ~1998
4136895718273791439 ~1998
413699453579179234310 ~2000
4137078838274157679 ~1998
4137235212978809351311 ~2002
413736959992968701710 ~2001
413753393579254750310 ~2000
4137584518275169039 ~1998
413784353248270611910 ~1999
413785139331028111310 ~2000
Exponent Prime Factor Digits Year
413786519993087645710 ~2001
4137925318275850639 ~1998
4137950518275901039 ~1998
4138020718276041439 ~1998
4138026598276053199 ~1998
413810261331048208910 ~2000
4138144918276289839 ~1998
4138168318276336639 ~1998
4138415638276831279 ~1998
4138447798276895599 ~1998
4138737118277474239 ~1998
4138805398277610799 ~1998
4138894318277788639 ~1998
4138924918277849839 ~1998
4138955518277911039 ~1998
413903729579465220710 ~2000
413918627331134901710 ~2000
4139219398278438799 ~1998
4139314438278628879 ~1998
4139445238278890479 ~1998
4139649238279298479 ~1998
4139680318279360639 ~1998
4139813038279626079 ~1998
4139857918279715839 ~1998
4139963998279927999 ~1998
Exponent Prime Factor Digits Year
4140016918280033839 ~1998
4140071518280143039 ~1998
4140080998280161999 ~1998
4140119638280239279 ~1998
4140166798280333599 ~1998
4140388198280776399 ~1998
414058717248435230310 ~1999
4140618718281237439 ~1998
4140654531325009449711 ~2001
4140707038281414079 ~1998
4140837838281675679 ~1998
4140877318281754639 ~1998
4140888913643982240911 ~2002
4140915118281830239 ~1998
4141042918282085839 ~1998
414131437248478862310 ~1999
4141575718283151439 ~1998
4141577398283154799 ~1998
414170957248502574310 ~1999
4141765971988047665711 ~2002
4141829038283658079 ~1998
414186121248511672710 ~1999
4141901038283802079 ~1998
4141946398283892799 ~1998
4142049611988183812911 ~2002
Exponent Prime Factor Digits Year
4142105518284211039 ~1998
4142308798284617599 ~1998
4142447518284895039 ~1998
414249599745649278310 ~2001
4142525398285050799 ~1998
4142688598285377199 ~1998
4142762518285525039 ~1998
4142831518285663039 ~1998
414286253248571751910 ~1999
4142953918285907839 ~1998
414304393248582635910 ~1999
4143057118286114239 ~1998
4143068638286137279 ~1998
4143206398286412799 ~1998
414337241248602344710 ~1999
4143536038287072079 ~1998
4143561718287123439 ~1998
4143570718287141439 ~1998
4143616798287233599 ~1998
4143819598287639199 ~1998
4143892198287784399 ~1998
414391277248634766310 ~1999
414392851414392851110 ~2000
4144014371906246610311 ~2002
414403621248642172710 ~1999
Home
4.933.056 digits
e-mail
25-07-20